Department of Applied Mathematics
 AMA1501 Introduction to Statistics for Business/ AMA1502 Introduction to Statistics Homework 2017/2018 Semester 2 Suggested outline solution

1

1(a)

Average monthly spending less than (\$)	Cumulative frequency
0	0
200	6
400	17
600	35
800	68
1000	120
1200	160

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f}=\frac{100 \times 6+300 \times 11+500 \times 18+700 \times 33+900 \times 52+1100 \times 40}{160} \\
& =\frac{126800}{160}=\$ 792.5
\end{aligned}
$$

Median $=800+\frac{160 \times 0.5-68}{52}(1000-800)=\$ 846.1538462$
$s=\sqrt{\frac{100^{2} \times 6+300^{2} \times 11+500^{2} \times 18+700^{2} \times 33+900^{2} \times 52+1100^{2} \times 40-\left(126800^{2} / 160\right)}{160-1}}$
$=\sqrt{\frac{112240000-126800^{2} / 160}{159}}=\$ 271.8559552$
1(b) $\quad S K_{2}=\frac{3(\text { Mean }- \text { Median })}{\text { Std.Dev. }}=\frac{3 \times(792.5-846.15385462)}{271.8559552}=-0.592$
The distribution is skewed to the left.
1(c)

$$
D_{8}=1000+\frac{160 \times 0.8-120}{40}(1200-1000)=\$ 1040
$$

1(d) Estimated no. of people $=52 \times \frac{1000-850}{1000-800}+40 \times \frac{1100-1000}{1200-1000}=59$

2(a)
$\frac{{ }_{1} P_{1} \times{ }_{19} P_{1} \times{ }_{1} C_{1} \times{ }_{49} C_{3}}{{ }_{20} P_{2} \times{ }_{50} C_{4}}=\frac{350056}{87514000}=\frac{1}{250}$
2(b) Let A be the event of selected employee is aged 45 or below.
Let B be the event of selected employee has the qualification of MBA.

$$
\operatorname{Pr}(A)=0.6, \operatorname{Pr}(B)=0.48, \operatorname{Pr}(B \mid A)=0.72
$$

2(b)(i) $\quad \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$

$$
\begin{aligned}
& =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A) \operatorname{Pr}(B \mid A) \\
& =0.6+0.48-0.6 \times 0.72=0.648
\end{aligned}
$$

2(b)(ii)

$$
\begin{aligned}
\operatorname{Pr}(B \mid \bar{A}) & =\frac{\operatorname{Pr}(\bar{A} \cap B)}{\operatorname{Pr}(\bar{A})}=\frac{\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)}{1-\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(B)-\operatorname{Pr}(A) \operatorname{Pr}(B \mid A)}{1-\operatorname{Pr}(A)} \\
& =\frac{0.48-0.6 \times 0.72}{1-0.6}=0.12
\end{aligned}
$$

2(b)(iii
$\operatorname{Pr}(\bar{A} \mid \bar{B})=\frac{\operatorname{Pr}(\bar{A} \cap \bar{B})}{\operatorname{Pr}(\bar{B})}=\frac{1-\operatorname{Pr}(A \cup B)}{1-\operatorname{Pr}(B)}=\frac{1-0.648}{1-0.48}=\frac{44}{65}$
2(c) Let A be the event of selected staff is satisfied with the working environment
Let B_{1}, B_{2}, B_{3} be the event of selected staff works in Hong Kong Island, Kowloon and New Territories, respectively.

$$
\begin{aligned}
& \operatorname{Pr}\left(B_{1}\right)=0.4, \operatorname{Pr}\left(B_{2}\right)=0.35, \operatorname{Pr}\left(B_{3}\right)=0.25 \text {, } \\
& \operatorname{Pr}\left(A \mid B_{1}\right)=0.8, \operatorname{Pr}\left(A \mid B_{2}\right)=0.6, \operatorname{Pr}\left(A \mid B_{3}\right)=0.75 \\
& \operatorname{Pr}\left(B_{1} \mid A\right)=\frac{\operatorname{Pr}\left(B_{1}\right) \operatorname{Pr}\left(A \mid B_{1}\right)}{\operatorname{Pr}\left(B_{1}\right) \operatorname{Pr}\left(A \mid B_{1}\right)+\operatorname{Pr}\left(B_{2}\right) \operatorname{Pr}\left(A \mid B_{2}\right)+\operatorname{Pr}\left(B_{3}\right) \operatorname{Pr}\left(A \mid B_{3}\right)} \\
& =\frac{0.4 \times 0.8}{0.4 \times 0.8+0.35 \times 0.6+0.25 \times 0.75}=\frac{0.32}{0.7175}=\frac{128}{287} \approx 0.4460
\end{aligned}
$$

3(a)(i) Let X be the daily cash withdrawal amount from this ATM.
$X \sim N\left(500000,200000^{2}\right)$
$P(380,000<X<800,000)=P(-0.6<Z<1.5)$
$=1-0.2743-0.0668=0.6589$
3(a)(ii) Let m be the minimum amount needed.
$P(X>m)=0.1 \quad P\left(Z>\frac{m-500000}{200000}\right)=0.1$
$\frac{m-500000}{200000}=1.28 \quad m=\$ 756,000$
3(a)(iii $\quad P(X>400,000)=P(Z>-0.5)=0.6915$
)
Let Y be the number of days having a cash requirement of at least $\$ 400,000$ each out of 100 days. $Y \sim b(100,0.6915)$
$n=100>30,0.1<p<0.9$,
$n p=100(0.6915)=69.15>5, n q=100(0.3085)=30.85>5$
Normal approximation can be used.

$$
\begin{aligned}
P(Y<65) \approx P(Y<64.5) & =P\left(Z<\frac{64.5-69.15}{\sqrt{100(0.6915)(0.3085)}}\right) \\
& \approx P(Z<-1.01)=0.1562
\end{aligned}
$$

3(b)(i) Let X be the number of visits to museums paid by a tourist of a certain city.
$X \sim \mathbf{P o}(3)$
$P(X<3)=e^{-3}\left(\frac{3^{0}}{0!}+\frac{3^{1}}{1!}+\frac{3^{2}}{2!}\right)=0.4232$
3(b)(ii) $\quad P(X<6 \mid X \geq 3)=\frac{P(3 \leq X<6)}{P(X \geq 3)}$

$$
=\frac{e^{-3}\left(\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!}\right)}{1-0.4232}=0.8545
$$

4(a) Let X be the period of time (days) that an American tourist stays in Country A.
$\because X \sim N\left(10.55,3.8^{2}\right)$ we have $\bar{X} \sim N\left(10.55, \frac{3.8^{2}}{20}\right)$.
$P(8 \leq \bar{X} \leq 12)=P(-3.00 \leq Z \leq 1.71)=1-0.00135-0.0436=0.95505$
4(b)(i)
$\sum x=19065, \quad \sum x^{2}=51099825$,
$\bar{x}=\frac{19065}{8}=2383.125$ (euro dollars)
$s=\sqrt{\frac{51099825-19065^{2} / 8}{8-1}}=899.6465$ (euro dollars)
$v=8-1=7, \quad t_{0.005 ; 7}=3.499$.
Therefore, a 99\% confidence interval for the mean expenditure of all French tourists is:
$2383.125 \pm 3.499 \frac{899.6465}{\sqrt{8}}=(1270.1873,3496.0627)$ (euro dollars $)$

4(b)(ii) $\quad Z_{0.025} \frac{500}{\sqrt{n}}<100 \Rightarrow 1.96 \frac{500}{\sqrt{n}}<100 \Rightarrow n>96.04$

4(c) Let \hat{p} be the sample proportion of the companies that have investments in Country A.

Then we have $\hat{p}=\frac{579}{1194}$. A 98% confidence interval for the population proportion is:

$$
\frac{579}{1194} \pm Z_{0.01} \sqrt{\frac{\left(\frac{579}{1194}\right)\left(1-\frac{579}{1194}\right)}{1194}}=\frac{579}{1194} \pm 2.33 \sqrt{\frac{356085}{1194^{3}}}=(0.4512,0.5186)
$$

