Subject Description Form

Subject Code	COMP5574			
Subject Title	Computational Economics and Algorithms			
Credit Value	3			
Level	5			
Pre-requisite/ Co-requisite/ Exclusion	Nil			
Objectives	The objectives of this subject are to:			
	1. Provide students with a foundational understanding of thegame- theoretic issues behind systems involvingcomputation such as online networks.			
	2. Enable students to learn how algorithms and algorithmicthinking can help with designing better decision and allocation mechanisms in the offline world.			
Intended Learning	Upon completion of the subject, students will be able to:			
Outcomes	a. understand the basic concepts of game theory andmechanism design;			
	b. apply computational methods to solve optimisation problems in economics, and design algorithms that incorporate economic principles for applications such asauctions, pricing, and resource allocation;			
	c. analyse the impact of information technology on marketstructures and economic strategies, and demonstrate theability of critical reading and analysis through paperreviews and panel discussions, enhancing abilities to writereviews and analyse papers from multiple perspectives;			
	d. evaluate the role of data and computational analysis ineconomic decision-making and policy formulation;			
	e. explore the ethical implications of computationaleconomics in the context of privacy, fairness, and marketregulation.			
Subject Synopsis/ Indicative Syllabus	1. Introduction to Computational Economics			
inuicative Synabus	• Overview of the field			
	 Intersection of economics and computer science Came Theory and Strategic Interaction 			
	2. Game Theory and Strategic InteractionBasic concepts of game theory			
	Basic concepts of game theoryNash equilibrium			

Price of Anarchy
 Repeated games and evolutionary stability
 3. Mechanism Design and Auction Theory
 Designing mechanisms for desired outcomes
 Auction formats and bidding strategies
 Revenue equivalence and incentive compatibility
 4. Market Design and Matching Algorithms
Two-sided matching markets
C C
 Stable matching and the Gale-Shapley algorithm Market design in practice, labour markets, schoolshoise, organ
• Market design in practice: labour markets, schoolchoice, organ donation
5. Optimisation and Linear Programming
• Linear programming in economic modelling
 Duality and sensitivity analysis
 Network flows and integer programming
6. Computational Models of Economic Dynamics
Agent-based modelling
Computational general equilibrium models
Dynamic stochastic models
• Voting systems, cake cutting, resource allocationand their computational aspects
7. Data Analysis and Econometrics
• Big data in economics
Machine learning techniques for economic data
Causal inference and experimental design
8. Digital Markets and Platforms
• Economics of digital goods and services
Platform competition and network effects
Pricing strategies and revenue management
Cryptocurrencies and Bitcoin
9. Algorithmic Game Theory and the Internet
• The role of algorithms in online markets
• Search engines and online advertising
Social networks and information diffusion
10. Ethical Considerations in Computational Economics
Privacy and data protection
Algorithmic bias and fairness
Regulation of digital markets

Teaching/Learning Methodology	Lectures provide students with the main concepts of economics and computation, together with comprehensive examples for easy understanding. Students will engage in hands-on exercises to apply computational techniques to economic problems. Projects and presentations will encourage collaboration and practical application of course material. Both written and programming assignments will be utilised in the							
	course. Written assignments help students develop analysis and design skills, whilst programming assignments emphasise implementation skills.							
Assessment Methods in Alignment with Intended Learning Outcomes	Specific assessment methods/tasks	% weighting	Intended subject outcomes to be (Please tick as app a b c			e ass	assessed propriate)	
	1. Assignment and Quiz	30%	u √	v √	 ✓ 	u	-	
	2. Project and Presentation	25%	1	~	~	~	~	
	3. Exam	45%	✓	~	~	~	~	
	Total	100 %				1	1	
	Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes: Assignments and Quizzes assess students' comprehension of the							
	fundamental concepts in economics and computation.The project and presentation evaluate students' critical and creative thinking capabilities, problem-solving skills, and their ability to apply the techniques and tools they have learnt to real-world applications.The exam is used to assess independent problem-solving and critical							
	thinking.	macpenaent	proor			unu		
Student Study Effort Expected	Class contact:							
Enort Expected	 Lecture/Tutorial/Lab/Paper panel 				39 Hrs.			
	Other student study effort							
	 Completing Assignment and Projects, Reviewing and preparing for quiz, readingpapers, and presentation 85 Hr 					ö Hrs.		
	Total student study effort				124 Hrs.			

Reading List and References	1. T. Roughgarden. Twenty Lectures on Algorithmic GameTheory, Cambridge University Press, 2016
	2. N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, Algorithmic Game Theory, 2007
	 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Langand Ariel D. Procaccia. Handbook of Computational SocialChoice, Cambridge University Press, 2016
	 Martin J. Osborne and Ariel Rubinstein, A Course in GameTheory, MIT Press, 1995
	 Andreu Mas-Colell, Michael D. Whinston, Jerry R. Green.Microeconomic Theory, Oxford University Press, 1995
	 David Easley and Jon Kleinberg. Networks, Crowds, andMarkets: Reasoning About a Highly Connected World,Cambridge University Press 2010