Subject Description Form

Subject Code	EIE4110					
Subject Title	Introduction to VLSI and Computer-Aided Circuit Design					
Credit Value	3					
Level	4					
Pre-requisite	EIE3100 Analogue Circuit Fundamentals					
Co-requisite/ Exclusion	Nil					
Objectives	To enable students to gain knowledge and understanding in the following aspects:					
	 Fundamentals of VLSI circuits and systems. VLSI design CAD tools. Hardware Description Languages (VHDL) VLSI design prototyping using Field Programmable Gate Arrays (FPGAs) 					
Intended Subject Learning Outcomes	Upon completion of the subject, students will be able to:					
	 <u>Category A: Professional/academic knowledge and skills</u> Understand the fundamentals of CMOS VLSI and associated technologies. Solve problems in the design of CMOS logic circuits, with particular reference to speed and power consumption. Acquire hands-on skills of using CAD tools in VLSI design. Appreciate the design process in VLSI through a mini-project on the design of a CMOS sub-system. 					
	 <u>Category B: Attributes for all-roundedness</u> 5. Communicate effectively. 6. Think critically and creatively. 7. Assimilate new technological and development in related field. 					
Subject Synopsis/	Syllabus:					
Indicative Syllabus	 <u>Overview of VLSI Design</u> VLSI design methodology; functional, logic and physical design; gate arrays and standard cells, programmable logic devices; system-on-chip. 					
	 <u>CMOS Fabrication and Layout</u> Fabrication processes in CMOS VLSI; latch-up; characteristics of devices in VLSI; mask layout techniques and design rules. 					
	3. <u>CMOS Logic Circuits</u> Transmission gates; static and dynamic gates and flip flops; domino logic.					
	 High Speed CMOS Logic Design Delay estimation and transistor sizing; device and interconnect capacitance; optimal delay design of buffers 					
	 Logic Synthesis Synthesis of Hardware Description Languages (HDL) e.g. VHDL or Verilog into gate-netlists. Timing and area optimizations. 					
	 <u>High-Level Synthesis</u> Synthesis of behavioural descriptions e.g. ANSI-C into Register Transfer Level Descriptions (i.e. synthesizable – Verilog or VHDL). Review of three main steps: (1) Resource allocation, (2)scheduling and (3) binding 					

Tooching/Loorning	 7 <u>Physical Design</u> Logic netlist partitioning methods, floor planning, placement of gate-netlists and routing 8. <u>Power Grid and Clock Design</u> Design of VLSI power grids and clock trees 9. <u>VLSI Power and Thermal Considerations</u> Power (static and dynamic power) estimation. Main factors that impact power consumption and how to reduce them e.g. Clock gating, Dynamic Voltage and Frequency Scaling (DVFS), voltage island. 10 <u>Design for Test (DFT)</u> Testability of ICs, scan chain, boundary scan, ATPG Laboratory Experiment/Mini-project: 1. Practice of CAD tools for VLSI design: circuit simulation and FPGA implementation using a FPGA prototyping board 2. Mini-project: design of a VLSI sub-system for computer or communication applications. 						
Teaching/ Learning Methodology	Teaching and Learning Method	Intended Subject Learning Outcome 1, 2, 6, 7	Remarks In lectures, students are introduced to the <i>knowledge</i> of the subject, and <i>comprehension</i> is strengthened with interactive Q&A and short quizzes. They will be able to <i>explain</i> and <i>generalize</i>				
	short quizzes Tutorials where design problems are discussed, and are given to students for them to solve	1, 2, 5, 6	knowledge in VLSI. In tutorials, students <i>apply</i> what they have learnt in analyzing the cases and solving the problems given by the tutor. They will <i>analyze</i> the given information, <i>compare</i> and <i>contrast</i> different scenarios and propose solutions or alternatives.				
	Laboratory sessions, where students will perform a mini- project on a subsystem design using CAD tools. They will have to write a report on their mini-projects.	2, 3, 4, 5, 6	Students <i>acquire</i> hands-on experience in using CAD tools in VLSI design, and <i>apply</i> what they have learnt in lectures/tutorials to do a mini-project on the design of a sub- system.				
	Assignment and Homework	1, 2, 3, 4, 5, 6	Through working assignment and homework, students will develop a firm understanding and <i>comprehension</i> of the <i>knowledge</i> taught. They will <i>analyze</i> given information and <i>apply</i> knowledge in solving problem. For some design type of questions, they will have to <i>synthesize</i> solutions by <i>evaluating</i> different alternatives.				

Assessment Methods in Alignment with Intended Subject Learning Outcomes	Specific Assessment Methods/Tasks	% Weighting	Intended Subject Learning Outcomes to be Assessed (Please tick as appropriate)						
			1	2	3	4	5	6	7
	1. Continuous Assessment (total 50%)								
	Min-project	20%	~	~	~	✓		~	~
	Individual Assignment	15%	~	~			~		
	Laboratory works and reports	15%		~	~	~	~		
	2. Examination	50%	~	~	~	✓		~	
	Total	100%		•	•			•	
	The continuous assessment w laboratory sessions. Explanation of the appropria assessing the intended learnin	ateness of t				-			

Specific Assessment Methods/ Tasks	Remark
Mini-project	Students are required to conduct one mini-project in teams of 3-4 students. The emphasis is on assessing their ability to apply knowledge and skills learned in designing a complex VLSI system, ability in working with other people and ability to take data and relate the measurement results to theory. Expectation and grading criteria will be given.
Individual assignment	The students will work on a small individua assignment to as demonstrate the development ar analytical skills related the design of VLSI circuits.
Laboratory works and reports	Students will be required to perform 6-7 laboratory sessions and write an individual laboratory report The emphasis is on assessing their ability to use VLS CAD tools effectively to perform VLSI design Expectation and grading criteria will be given as in the case of mini-project.
Examination	There will be an end-of-semester examination to assess students' achievement of all the learning outcomes. Expectation and grading criteria will be given as in the case of mini-project.

Student Study	Class contact (time-tabled):			
Effort Expected	Lecture	24 Hours		
	Tutorial/Laboratory/Practice Classes	15 Hours		
	Other student study effort:			
	Lecture: preview/review of notes; homework/assignment; preparation for test/quizzes/examination	36 Hours		
	Tutorial/Laboratory/Practice Classes: preview of materials, revision and/or reports writing	30 Hours		
	Total student study effort:	105 Hours		
Reading List and References	 Reference Books: D.A. Hodges, H.G. Jackson and R.A. Saleh, <i>Analysis and Design of Digital</i> <i>Integrated Circuits</i>, 3rd ed., New York: McGraw-Hill, 2003. W. Wolf, <i>Modern VLSI Design: System-on-chip Design</i>, 3rd ed., Englewood Cliffs: Prentice-Hall, 2002. P. Ashenden, The Designers Guide to VHDL,3rd ed., Morgan Kaufmann, 2008. 			
Last Updated	June 2015			
Prepared by	Dr Benjamin CARRION SCHAFER			