Interviews with Faculty Researchers
Exploring the Wonderland of Hybrid Organic-Inorganic Materials
– Interview with Prof. Tom Tao Wu
Chair Professor of Frontier Materials, Department of Applied Physics
In the recent decade of materials science, hybrid organic-inorganic materials have emerged as a transformative class, blending organic and inorganic components at the molecular level. Leading this field, Prof. Tom Wu's pioneering research has highlighted their distinctive advantages and diverse applications across various sectors.
These materials offer a vast chemical space to navigate, allowing tailored hybrid materials composed of elements across a wide range of the periodic table with rich structures and dimensionalities. They also transcend conventional boundaries of material design by integrating weak bonds like van der Waals, electrostatic, and hydrogen bonds, resulting in properties that exceed those of individual components.
Leveraging the unprecedented versatility of hybrid materials, Prof. Wu's work focuses on the materials discovery and precise control over building block compositions. His team has strived to fine-tune the properties of hybrid materials for specific applications with extraordinary precision and performance, ensuring scalability and accessibility.
In optoelectronics, Prof. Wu's efforts on hybrid perovskite materials have made significant breakthroughs and garnered lots of attention, making him one of the Clarivate Highly Cited Researchers. Hybrid materials offer compelling advantages over traditional technologies, including remarkable efficiency gains, low-cost solution processability, tunable bandgap, high absorption coefficient, defect tolerance, and ambipolar transport capabilities. These advantages collectively highlight the transformative potential of hybrid perovskites, particularly in reshaping the solar energy landscape. Despite the obstacles related to stability, durability, and manufacturing intricacies, the high annual growth rate underscores the immense promise of perovskite-based technologies.
Prof. Wu's research extends beyond optoelectronics into diverse fields like data storage, catalysis, and sensors. By blending organic and inorganic components at the atomic level, hybrid materials offer unlimited tunability and functionalities surpassing traditional materials. His team explores the vast chemical space of hybrids, uncovering unknown compositions and structures using innovative methods like high-throughput calculations, machine learning, and epitaxial growth. Another direction entails discovering facile methods to synthesize nanoscale low-dimension hybrid materials and pursuing their physical properties and device performance to enable disruptive electronic and energy technologies.
探索有機無機雜化材料的奇妙世界
– 吳韜教授專訪
應用物理學系前沿材料講座教授
過去十年,新型有機無機雜化材料在材料科學界崛起,引起世界範圍内研究的熱潮。這些新材料不僅結合有機和無機材料的優點,而且具有獨特的性質。在這個前沿領域,吳韜教授及團隊展開了開創性研究,成果彰顯了這種材料的優勢以及巨大的應用潛力。
通過精確控制有機與無機成份及兩者之間的相互作用,吳教授的團隊合成出各種具備不同結構和不同物性的新材料。通過整合范德華力、靜電力和氫鍵等弱鍵,這種雜化材料能夠打破傳統材料的結構框架,讓雜化材料的功能性更加豐富多彩,更能滿足特定應用的需要。
在光電子學領域,吳教授在雜化鈣鈦礦材料方面的研究取得了重大突破,引起了廣泛關注,使他成為Clarivate全球高引用的研究專家。與傳統技術相比,雜化材料一流的效率、低廉的溶液加工成本、可調節帶隙、高吸收系數、缺陷容忍度以及雙極傳輸能力等,都使其具有無可替代的優勢。雜化鈣鈦礦的巨大潛力,尤其在太陽能及發光技術方面,相信能給社會帶來顛覆性的改變。雖然雜化鈣鈦礦材料在穩定性、耐用性和製造工藝方面仍面對挑戰,但其受到的廣泛關注及應用的快速發展,彰顯了學術界同行的肯定及市場對鈣鈦礦等雜化材料相關技術的巨大需求。
前沿雜化材料的研究範圍已從光電子學擴展到數據儲存、催化和傳感器等多個領域。透過將雜化材料的成分及結構不斷進行改造,這些新材料擁有無限的可能性,且功能亦在多方面超越傳統材料。吳教授的團隊致力於利用高通量計算、機器學習和外延生長等創新方法,研發出前所未見的新物質成份和結構。而且團隊以簡單的方法,合成納米級低維雜化材料,並對其物理性質和性能進行深入研究,以為電子和能源技術帶來新的靈感及突破。