Research Excellence
Improving carrier mobility in two-dimensional semiconductors with rippled materials
An interdisciplinary team led by Dr YANG Ming of the Department of Applied Physics, Faculty of Science, recently developed an approach to realize record-high carrier mobility in the 2D semiconductor MoS2. In the study, Dr Yang and his team members showed that by conforming to bulged substrates, the rippled structures could be introduced in the 2D MoS2, which not only leads to an increased intrinsic dielectric constant of MoS2, but also can effectively suppress the phonon scattering. By using this method, they have demonstrated two orders of magnitude enhancement in room-temperature mobility in rippled MoS2 for the first time. These findings have been published in an internationally renowned journal Nature Electronics. Dr Yang’s research has deepened the understanding of tuning carrier mobility in 2D semiconductors and shed light on developing a broad range of high-performance electronic and optoelectronic devices.
Learn more: https://www.nature.com/articles/s41928-022-00777-z
晶格彎曲增强二維半導體載流子遷移率
半導體是電腦、智能手機、電器和醫療設備等器材中最關鍵的零件,常見的半導體材料有矽和鍺。與傳統的三維半導體形式相比,二維半導體有更優秀的壓電效應,有望取代矽應用於未來的電子設備。然而,在室溫下,二維半導體的載流子遷移率會下降,妨礙了其在高性能半導體器件的應用。因此,如何提高室溫下二維半導體的載流子遷移率,是亟待解決的重要課題。
最近,由理學院應用物理學系楊明博士帶領的跨學科團隊針對這個課題取得了重大的突破。該團隊發現利用彎曲基底,在二維半導體(二硫化鉬)中引入彎曲的結構,可增加二維半導體内稟的介電常數,并有效地減弱室溫下的聲子散射,從而實現了室溫下超高的載流子遷移率。這項研究刊載於國際知名期刊《Nature Electronics》。楊博士及其合作者的研究不單加深了人們對二維半導體載流子遷移率的認識,同時為開發高效能的二維半導體電子器件、二維光電器件等,提供了重要的參考依據。
了解更多:https://www.nature.com/articles/s41928-022-00777-z