Dr Jianming Chen, Member of the Research Centre of Textiles for Future Fashion, collaborated with other researchers and published an article entitled “Replicating shear-mediated self-assembly of spider silk through microfluidics” in Nature Communications.
ABSTRACT
The development of artificial spider silk with properties similar to native silk has been a challenging task in materials science. In this study, we use a microfluidic device to create continuous fibers based on recombinant MaSp2 spidroin. The strategy incorporates ion-induced liquid-liquid phase separation, pH-driven fibrillation, and shear-dependent induction of β-sheet formation. We find that a threshold shear stress of approximately 72 Pa is required for fiber formation, and that β-sheet formation is dependent on the presence of polyalanine blocks in the repetitive sequence. The MaSp2 fiber formed has a β-sheet content (29.2%) comparable to that of native dragline with a shear stress requirement of 111 Pa. Interestingly, the polyalanine blocks have limited influence on the occurrence of liquid-liquid phase separation and hierarchical structure. These results offer insights into the shear-induced crystallization and sequence-structure relationship of spider silk and have significant implications for the rational design of artificially spun fibers.
Read the full article in Nature Communications. URL: https://doi.org/10.1038/s41467-024-44733-1
Research Units | PolyU Academy for Interdisciplinary Research | Research Centre of Textiles for Future Fashion |
---|