Skip to main content Start main content

CSC-Unet: a novel convolutional sparse coding strategy based neural network for semantic segmentation

Tang, H., He, S., Yang, M., Lu, X., Yu, Q., Liu, K., Yan, H., & Wang, N. (2024). CSC-Unet: a novel convolutional sparse coding strategy based neural network for semantic segmentation. IEEE Access, 12, 35844-35854. https://doi.org/10.1109/ACCESS.2024.3373619

 

Abstract

It is still a challenging task to perform the semantic segmentation with high accuracy due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information of images, which put limit on their generality and robustness for various application scenes. Thus, in this paper, we proposed a novel strategy that reformulated the popularly used convolution operation to multi-layer convolutional sparse coding block in semantic segmentation method to ease the aforementioned deficiency. To prove the effectiveness of our idea, we chose the widely used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively. In addition, the proposed strategy could be possibly used to significantly improve segmentation performance of any semantic segmentation model that involves convolution operations and the corresponding code is available at https://github.com/NZWANG/CSC-Unet .

FH_23Link to publication in IEEE Xplore

FH_23Link to publication in Scopus

 

Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here