Skip to main content Start main content

Speakers

About_Breadcrumb
Prof. Tobin J. MARKS

Prof. Tobin J. MARKS

Vladimir N. Ipatieff Professor of Catalytic Chemistry and Chemical and Biological Engineering, Department of Chemistry,

Biography

Prof. Tobin MARKS received a BS from the U. of Maryland, and a PhD from MIT. Recognitions include: the U.S. National Medal of Science, Spanish Principe de Asturias Prize, MRS Von Hippel Award, Dreyfus Prize in Chemical Sciences, NAS Award in Chemical Sciences, ACS Joseph Priestley Medal, the Israel Harvey Prize, and the German Chemical Society Karl Ziegler Prize. He is a member of the U.S., German, Italian, European, and Indian National Academies of Sciences, the American Philosophical Society, the U.S. National Academy of Engineering, the American Academy of Arts and Sciences, and the U.S. National Academy of Inventors. Honorary Fellow: the U.K. Royal Society of Chemistry, the MRS, the ACS, and the Chinese Chemical Society. He has received more than 250 other national and international awards, prizes, lectureships, and fellowships. He has published 1670 peer-reviewed articles and holds 275 issued U.S. patents. ISI h-index = 168 on 117,758 citations; Google Scholar h-index = 188 and i10-index = 1224 on 148,889 citations. Honorary Doctorate Degrees: Hong Kong U. of Science and Technology, the U. of South Carolina, the Ohio State U, and the Technical U. of Munich. Marks has founded/co-founded two start-up companies and has served on advisory boards of more than 15 major corporations and/or start-ups.

 

Making Printable, Mechanically Agile Electronics and Opto-Electronics a Reality: Polymers, Heterojunctions, Amorphous Oxides
 

Abstract

This lecture focuses on the challenge of designing, realizing via targeted synthesis and fabrication, characterizing via diverse physical techniques, hybridizing hard and soft matter, and understanding in depth, new, dissimilar materials families for unconventional electronics and opto-electronic devices to provide a number of targeted applications. Fabrication methodologies to achieve these goals will ultimately include high-throughput, large-area, high-resolution, environmentally benign printing and coating techniques.  Materials design features to be discussed include: 1. Rationally designed high-mobility mechanically agile p- and n-type soft matter semiconductors for organic CMOS; 2. Polycrystalline and amorphous oxide semiconductors for printable, transparent, and  mechanically agile electronics, 3. Hybrid organic + inorganic semiconductors for high carrier mobility, optical transparency, and mechanical agility, 4. Combining these materials sets to rapidly fabricate scalable, high-performance thin-film complementary transistors and complementary logic devices for future switching, sensing, and bioelectronics technologies.

 

Recent representative publications

  1. Chen, Y.; Wu, J.; Lu, S.; Facchetti, A.; Marks, T.J.; Semiconducting Copolymers with Naphthalene Imide/Amide p-Conjugated Units: Synthesis, Crystallography, and Systematic Structure−Property−Mobility Correlations, Angew.Chem. 2022, Online ahead of print. DOI:/10.1002/anie.202208201.VIP paper.
  2. Chen, J.; Huang, W.; Zheng, D.; Xie, Z.; Zhuang, X.; Zhao, D.; Chen Y.; Su, N.; Chen, H.; Pankow, R.M;Gao, Z.; Yu, J.; Guo, X.; Cheng, Y.; Strzalka, J.; Yu, X.; Marks, T.J.; Facchetti, A.; Highly Stretchable Organic Electrochemical Transistors with Strain-Resistant Performance, Nat. Mater., 202221, 564–571. DOI:10.1038/s41563-022-01239-9.
  3. Wang, B.; Huang, W.; Facchetti, A.; Marks, T.J.; Low-Temperature Thin-Film Combustion Synthesis of Metal Oxide Semiconductors: Science and Technology, in “Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory,” Hosono, H.; Kumomi, H. Eds., First Edition, John Wiley & Sons Ltd., 2022, Chapter 8, 159-184. DOI:10.1002/9781119715641.
  4. Yao, Y.; HuangW.; ChenJ.; WangG.; ChenH.; ZhuangX.; YingY.; PingJ.; MarksT.J.; Facchetti, A.; Flexible Complementary Circuits Operating at Sub-0.5 V via Hybrid Organic-Inorganic Electrolyte-Gated Transistors, PNAS 2021118, e2111790118. DOI:10.1073/pnas.2111790118.
  5. Wang, B.; Huang, W.; Lee, S.; Huang, L.; Wang, Z.; Chen, Y.: Chen, Z.; Feng, L.; Wang, G.; Yokota, T.; Someya, T.; Marks, T.J.; Facchetti, A. Foundry-Compatible High-Resolution Patterning of Vertically Phase-Separated Semiconducting Films for Ultraflexible Organic Electronics, Nature Comm202112, 4937. DOI: 10.1038/s41467-021-25059-8.
  6. Huang, L.; Wang, Z.; Chen, J.; Wang, B.; Chen, Y.; Huang, W.; Chi, L.; Marks, T.J.; Facchetti, A.; Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors, Advan. Mater. 202133, e2007041. DOI:10.1002/adma.202007041.
  7. Wang, B.; Thukral, A.; Xie, Z.; Liu, L.; Zhang, X.; Huang,W.; Yu, X.; Yu, C.; Marks, T.J.; Facchetti, A.; Flexible and Stretchable Metal Oxide Nanofiber Networks for Multimodal and Monolithically Integrated Wearable Electronics, Nature Comm. 202011, 2405-2416. DOI: 10.1038/s41467-020-16268-8.
  8. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A.; High-k Gate Dielectrics for Emerging Flexible and Stretchable Electronics, Chem. Rev.2018118, 5690-5754.DOI: 10.1021/acs.chemrev.8b00045.

 

 

Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here