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Fig. 1 The overall framework of the Inter- and Intra-Modality Consistency Regularized Low-Rank Tensor Networks (IICR-LTN) framework.

Method Acc. (train)↑ Acc. (test) ↑ F1 (train) ↑ F1 (test) ↑ MAE (train) ↓ MAE (test) ↓ #! (train) ↑ #! (test) ↑

Feature Selection
LAP [20] 0.8136 0.6000 0.7168 0.3571 4.9584 5.2184 0.0201 <0

SPEC [21] 0.9333 0.6222 0.9189 0.5143 4.9919 5.2266 0.0068 <0
MCFS [22] 0.9556 0.6444 0.9474 0.5556 4.9584 5.2184 0.0201 <0

CCA

GRCCA [23] 0.8232 0.6000 0.7504 0.5000 3.6279 4.7613 0.4169 0.1178
MCCA [24] 0.8505 0.6000 0.8003 0.4706 4.4492 4.9608 0.1906 <0
GCCA [25] 0.8854 0.7778 0.8550 0.7222 3.0837 4.5517 0.5896 0.1381
TCCA [26] 0.7818 0.6889 0.7173 0.6111 4.3680 4.9180 0.2422 0.0227

Proposed 0.8909 0.8444 0.8596 0.8108 2.0906 3.2493 0.6582 0.3858

Modalities
Acc. (train)↑ Acc. (test) ↑ F1 (train) ↑ F1 (test) ↑ MAE (train) ↓ MAE (test) ↓ #! (train) ↑ #! (test) ↑EEG fMRI PSG

× ✓ ✓ 0.8879 0.6889 0.8560 0.5625 3.4010 3.9998 0.4614 0.2851
✓ × ✓ 0.9172 0.7778 0.8967 0.7059 3.1732 4.0303 0.5253 0.2995
✓ ✓ × 0.7657 0.6000 0.6839 0.4375 3.3362 4.0052 0.4679 0.2862
✓ ✓ ✓ 0.8909 0.8444 0.8596 0.8108 2.0906 3.2493 0.6582 0.3858

Table 2 Comparative experiments on predictive analysis of Connor-Davidson Resilience Scale (CD-RISC) using EEG, fMRI, and PSG signals with
unsupervised feature selection methods, Canonical Correlation Analysis (CCA) methods, and our proposed method as feature extraction techniques.
Accuracy (Acc.) and F1 score are reported for binary classification. Mean absolute error (MAE) and #! are reported for regression.

Table 3 Ablation studies on the modalities for predicting the Connor-Davidson Resilience Scale (CD-RISC) score (or class). The EEG signals, fMRI signals,
and PSG signals are respectively ablated while accuracy (Acc.) and F1 score are reported for binary classification. Mean absolute error (MAE) and #! are
reported for regression.

Interpretability Experiments are conducted to provide further insight.
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Background of Psychological Resilience Prediction

Comparative Experiments show IICR-LTN 
performs better than existing work with all designs.

IMPACT Psychological resilience is a dynamic process where protective resources interact with stress to minimize negative effects. It is 
essential for mental well-being and coping strategies. It is essential to identify individuals at risk of psychological problems and 
intervene proactively to prevent tragic outcomes.
PROBLEM Recent studies have made progress in constructing prediction models of psychological resilience relying on data reduction via 
handcrafted summarization of data statistics or feature selection algorithms, while deep learning algorithms suffer from data scarcity.

Proposed Method for Resilience Prediction
Low-rank Tensor Networks  are designed 
models constraining the weight parameters in 
the network to have a low intrinsic rank, 
simplifying the network model with reduced 
parameters and capturing elementary features.
Inter-modality Consistency Regularization  
regularizes the model to learn a representation 
that explains features from multiple modalities
and penalizes redundant features. 
Intra-modality Consistency Regularization  
introduces augmented samples via masking-
based corruptions and enforces the invariant 
representation across corruptions of original 
samples, making the model less noise-
sensitive.

FRAMEWORK Fig. 1 The proposed Inter- and Intra-modality Consistency Regularized 
Low-rank Tensor Networks (IICR-LTN) contains three core designs.

Experimental Results on Different Datasets

Methods Acc. (%)
SEED SEED-IV

Mean Std Mean Std
Concatenation [13,14] 83.7 - 73.7 8.9
Max [13] 81.7 - 73.2 9.3
Fuzzy Integral [13] 87.6 19.9 73.2 8.7
DGCNN [15] 90.4 8.5 - -
SLFN [16] 91.5 - - -
Bimodal-LSTM [17] 94.0 7 - -
BDAE [14,18] 91.0 8.9 79.7 4.8
DCCA-AM [19] 94.6 6.2 85.3 5.6
Proposed 97.6 4.9 88.4 5.6

Table 1 Performance comparison of the proposed method with state-of-the-art
approaches on two public multimodal emotion recognition datasets. The experiments are
conducted using EEG signals and eye movements to classify three emotions on the
SEED dataset and five emotions on the SEED-V dataset. The mean and standard
deviation (Std) of accuracy are reported, with the best performances highlighted by bold.
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Fig. 2 The visualization experiments on the synthetic dataset
demonstrate the distribution of the learned representations by
projecting them onto a 2D plane using T-SNE.
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Fig. 2 The topographic maps of absolute weight distribution on electrodes and
frequency sub-bands of EEG signals. Darker colors indicate higher absolute weights,
while lighter colors indicate the opposite.
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Fig. 3 The learned weights on functional connectivities of fMRI.
Functional connectivities between regions of interest are marked by
lines, with darker red indicating larger absolute values of weights
while lighter colors indicate the opposite.
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Fig. 4 Absolute weights learned on PSG activities from 0-11 hours
AM and 0-11 hours PM. Taller bars represent higher absolute
weights.


