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𝐻∞ optimization of dynamic vibration absorbers (DVAs) to minimize the maximum response 
amplitude of primary structures is a classical topic. The commonly used fixed-point method 
only provides approximate solutions requiring the primary structure is undamped. Instead, we 
perform exact optimization and investigate the less-reported parametric effects on optimization 
operability. To handle the known restrictions posed by grounded dampers, a typical DVA model 
mounted on a damped primary structure, with components connected to both the primary and 
the base, is considered. We explore three elaborated cases depending on the grounded dampers 
distributing in the primary structure and the DVA. Our findings reveal that the frequency 
responses of the primary structure with dual resonant peaks of equal height may not be the 
global optimum, and we establish a nontrivial necessary condition for operable exact optimization. 
Furthermore, we elucidate the effects of structural arrangements on the optimized results and 
provide design rules to maximize vibration suppression performance. The optimization follows 
the proposal of a so-called resultant-based algorithm that guarantees global optimum with high 
efficiency and a generalizable core by exclusively constructing univariate polynomial equations. 
This study contributes a systematic analysis framework alongside efficient calculation tools for 
exact optimization and DVA performance evaluation.

1. Introduction

Dynamic vibration absorber (DVA) is a widely-used vibration reduction technique which was invented by Frahm [1] in the 1900s 
by attaching a proof mass to the primary structure via a spring, as depicted in Fig. 1(a). This undamped DVA prototype was shown to 
be effective in suppressing the vibrations at the natural frequency of the DVA itself. Den Hartog and Omondroyed [2] later introduced 
an additional damper to extend the vibration reduction band, leading to the damped DVA construction in Fig. 1(b). Furthermore, it 
showed that the frequency response curve of an un-damped primary structure crosses two fixed points regardless of the DVA damping, 
which can be used to optimize the stiffness and damping of the DVA to minimize the maximum motion amplitude of the primary, 
i.e., the so-called 𝐻∞ optimization [3,4], resulting in the concept of tuned mass damper.

Based on the fixed-point theory and the 𝐻∞ optimization criterion, extensive research has been conducted while proposing 
various DVA designs to further enhance performance. For instance, Ren [5] and Wong et al. [6,7] associated the damper of Den 
Hartog’s DVA [2] with the base rather than the primary structure, and the optimized DVA exhibited superior performance. Krenk [8] 
proposed a root locus-based optimization procedure and additionally reduced DVA strokes and flattened the frequency response curve 
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Fig. 1. (a). DVA prototype. (b). Den Hartog’s DVA. (c). The DVA mounted on a damped primary structure. (d). Shen’s lever-type DVA [30]. (e). Baduidana’s flywheel

type DVA [31]. (f). The considered DVA model to be optimized.

of the primary structure by slightly increasing the optimal damping of Den Hartog’s DVA. Cheung and Wong [9] and Li et al. [10] 
optimized DVA parameters and the installation position to reduce plate vibrations. Sun et al. [11--13] designed a tunable damper 
using the electromagnetic shunt to facilitate the practical implementation of optimum parameters. Moreover, negative grounded 
stiffness was introduced to Ren’s DVA [5] with optimization and comparisons performed in [14]. Inerter components then showed 
benfits by achieving large-proof-mass effects and flexibility in connecting with other components [15--19]. The optimization of DVAs 
with both inerter and negative stiffness components can be referred to [20--23]. In addition, mechanical amplifying mechanisms are 
used to enhance vibration control, see [24--29] for broadband vibration absorption and isolation problems. For the 𝐻∞ optimization 
problem of DVA, Shen et al. [30] combined the lever and negative-stiffness components as in Fig. 1(d) and showed that the lever 
component benfits vibration suppression in a way similar to an inerter. Following [30], Baduidana et al. [31] proposed and optimized 
a flywheel-type DVA depicted in Fig. 1(e) to simultaneously achieve the benfits of the lever and tunable inertia, resulting in further 
suppressed amplitude peaks of the primary structure and extended frequency band of vibration reduction, see also [32] for a similar 
flywheel-based DVA alternative. To handle the possible difficulties in connecting the DVA to the fixed ground, one can refer to 
[33--35] for skyhook dampers and electromagnetic solutions.

However, two issues are critical for the 𝐻∞ optimization using the fixed-point method: (i). This method only gives approximate 
solutions. (ii). This method is unable to handle the cases where the primary structure is damped, exemplfied by Fig. 1(b), (d), 
and (e). To tackle the latter problem, Asami et al. [36] took a further step using an approximate approach to seek series solutions. 
Thereafter, based on the DVA model in Fig. 1(c), Nishihara and Asami [37] proposed an exact method to adjust the two resonance 
peaks of the primary structure to the same height by using the relation between the polynomial coefficients and roots. The method, 
called Nishihara’s method, yields exact closed-form and numerical solutions when the primary structure is undamped and damped, 
respectively. Following the same idea, Nishihara’s method has now been generalized to the exact optimization of DVAs with multiple 
degrees of freedom (MDOF) and various combinations of springs and dampers [38--43].

Interestingly, we notice that existing studies use more the approximate fixed-point method to optimize DVAs rather than Nishi

hara’s method, although the latter has presented exact solutions for over 20 years. Besides, the prerequisite for applying the fixed-point 
method is that the primary structure is either undamped or very slightly damped, which obviously leads to conservative results. Fur

thermore, to the best of our knowledge, even if the optimization problem is related to an undamped primary structure, which may 
hardly appear in engineering practice, none of the existing works that use the fixed-point method check if the considered DVAs 
can be exactly optimized before performing the approximate optimization. Thus, one main objective is to investigate the parametric 
conditions on the operability of exact optimization, an unexplored and crucial research gap.

Since the DVAs with grounded damping and stiffness are known to have better vibration suppression performance and since 
Nishihara’s method is more used to optimize the DVA with all its components coupled between the proof mass and the primary 
structure, we here consider the exact optimization problem of a general DVA model as shown in Fig. 1(f), where the primary structure 
is damped and the DVA components are attached to both the base and the primary structure. Note that such a model is the prototype of 
a large range of DVA variants including the two in Fig. 1(d) and (e), given that the lever and flywheel essentially function as an inerter 
to alter DVA’s equivalent proof mass [30,31]. That is, conclusions from this basic model can be generalized to guide the DVA design 
and optimization, as long as structural variants act as an alternation of equivalent system mass, stiffness, and damping, exemplfied 
by the generalization of [38--43] from [37]. However, performing exact optimization is not a simple task since the increased number 
of DVA components makes the system dynamics more complex, especially considering that the term ‘exact’ means that we shall seek 
non-conservative analytical conditions to reach the global optimum.

We stress that only when simultaneously guaranteeing non-conservativeness, high efficacy, and ease of operation, can the exact 
methods be compelling when the approximate fixed-point method-based and exact optimization are both operable. This is related 
to the possible concerns that the improved performance by seeking exact solutions can be limited when the primary structure is 
undamped or slightly damped [37], while the equations to be handled for exact solutions become too complex to non-conservatively 
find the global optimum. To this end, we avoid the heavy iterative searching methods for optimizing complex structures [44--47]. 
Alternatively, we develop simplfied exact optimization procedures inspired by Nishihara’s method [37], i.e., equations to be handled 
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can be cast into purely polynomial forms. With this, the methods recently adopted by the authors for dynamical analysis [48--50], 
which convert a set of multivariable polynomial equations to much simpler univariate ones using the resultant concept [51], can be 
applied. Note that this idea has been partially reported in our previous work [52] for optimizing the DVA model in Fig. 1(c), but 
in a rudimentary and incomplete manner. Besides, the resultant concept also appeared in [37], where, however, only the reduced 
case with an undamped primary structure was considered. Based on the above, focusing on the general DVA model in Fig. 1(f), an 
automatic, purely algebraic, more efficient, and exact optimization algorithm is formally proposed in this work. Furthermore, the 
mentioned less-reported parametric effects of structural component arrangements on the optimization operability, solution behaviors, 
and vibration suppression are investigated and summarized. Particularly, issues with Nishihara’s method when the primary structure 
is damped are discussed and complemented, a nontrivial necessary condition for an operable exact optimization is established for 
the first time, and counterexamples for the common belief that equal-peak feature yields the global optimum are found. This work 
systematically considers the exact optimization problem by characterizing solution behaviors and provides relevant general and 
efficient computational tools, with abundant comparison studies.

In what follows, Section 2 formulates the optimization problem. Sections 3, 4, and 5 address three elaborated optimization 
problems involving different damping arrangements to introduce the proposed optimization framework and its application and gen

eralization. Section 6 presents the details and the efficiency of the proposed optimization procedures. Section 7 gives some further 
remarks on the optimization problem. Conclusions are drawn in Section 8. Italic symbols without a bar superscript ‘□’ represent 
dimensionless quantities throughout the text.

2. Preliminaries

System dynamics and the optimization problem are formulated in this section. In particular, Nishihara’s method [37] is formally 
rfined as mathematical lemmas to facilitate further usages, with its essence highlighted.

2.1. Mathematical model

Dynamics of the 2DOF coupled system shown in Fig. 1(f), consisting of a primary structure, an absorber, and three pairs of linear 
springs and dampers, under the harmonic excitation 𝑓 , are governed by[

𝑚̄𝑝 0
0 𝑚̄𝑎

][
̈̄𝑥𝑝
̈̄𝑥𝑎

]
+
[
𝑐𝑝 + 𝑐𝑎 −𝑐𝑎
−𝑐𝑎 𝑐𝑎 + 𝑐𝑔

][
̇̄𝑥𝑝
̇̄𝑥𝑎

]
+
[
𝑘̄𝑝 + 𝑘̄𝑎 −𝑘̄𝑎
−𝑘̄𝑎 𝑘̄𝑎 + 𝑘̄𝑔

][
𝑥̄𝑝
𝑥̄𝑎

]
=
[
𝑓

0

]
, (1)

where 𝑥̄(⋅), 𝑚̄(⋅), 𝑐(⋅), and 𝑘̄(⋅) represent displacement, mass, damping, and stiffness, respectively; the dotted symbols ̇̄𝑥(⋅) and ̈̄𝑥(⋅) stand 
for the first- and the second-order derivatives with respect to time 𝑡, respectively; in addition, the subscripts 𝑎, 𝑝, and 𝑔 denote the 
absorber, the primary structure, and the grounded components, respectively. The governing equations (1) in the Laplace domain 
write [

𝐴̄ (𝑠̄) 𝐵̄ (𝑠̄)
𝐶̄ (𝑠̄) 𝐷̄ (𝑠̄)

][
𝑋𝑝
𝑋𝑎

]
=
[
𝐹

0

]
, (2)

where 𝑠̄ is the Laplace variable such that 𝑋𝑝,𝑎 (𝑠̄) =ℒ
(
𝑥̄𝑝,𝑎

(
𝑡
))

and 𝐹 (𝑠̄) =ℒ
(
𝑓
(
𝑡
))

, with the notation ℒ (⋅) denoting the Laplace 
transformation operation, and

⎧⎪⎪⎨⎪⎪⎩
𝐴̄ (𝑠̄) = 𝑚̄𝑝𝑠̄2 +

(
𝑐𝑝 + 𝑐𝑎

)
𝑠̄+ 𝑘̄𝑝 + 𝑘̄𝑎,

𝐵̄ (𝑠̄) = −
(
𝑐𝑎𝑠̄+ 𝑘̄𝑎

)
,

𝐶̄ (𝑠̄) = −
(
𝑐𝑎𝑠̄+ 𝑘̄𝑎

)
,

𝐷̄ (𝑠̄) = 𝑚̄𝑎𝑠̄2 +
(
𝑐𝑎 + 𝑐𝑔

)
𝑠̄+ 𝑘̄𝑎 + 𝑘̄𝑔 .

(3)

Introducing the following scaled symbols

𝜇 = 𝑚̄𝑎∕𝑚̄𝑝, 𝜔̄𝑝 =
√
𝑘̄𝑝∕𝑚̄𝑝, 𝜔̄𝑎 =

√
𝑘̄𝑎∕𝑚̄𝑎, 𝜂 = 𝑘̄𝑔∕𝑘̄𝑎, 𝑠 = 𝑠̄∕𝜔̄𝑝,

𝑣 = 𝜔̄𝑎∕𝜔̄𝑝, 𝜁𝑝 = 𝑐𝑝∕
(
2𝑚̄𝑝𝜔̄𝑝

)
, 𝜁𝑎 = 𝑐𝑎∕

(
2𝑚̄𝑎𝜔̄𝑎

)
, 𝜁𝑔 = 𝑐𝑔∕

(
2𝑚̄𝑎𝜔̄𝑎

)
,

(4)

the governing equation (2) can be reshaped into a dimensionless matrix form of

𝐙𝐗 = 𝐅 (5)

where 𝐗 =
[
𝑋𝑝,𝑋𝑎

]T
, 𝐅=

[
𝐹∕𝑘̄𝑝,0

]T
, and

𝐙 =
[
𝐴 (𝑠) 𝐵 (𝑠)
𝐶 (𝑠) 𝐷 (𝑠)

]
, (6)

in which
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𝐴 (𝑠) = 𝑠2 + 2𝜁𝑝𝑠+ 1 + 𝜇𝑣

(
2𝜁𝑎𝑠+ 𝑣

)
,

𝐵 (𝑠) = −𝜇𝑣
(
2𝜁𝑎𝑠+ 𝑣

)
,

𝐶 (𝑠) = −𝑣
(
2𝜁𝑎𝑠+ 𝑣

)
,

𝐷 (𝑠) = 𝑠2 + 𝑣
(
2𝜁𝑔𝑠+ 𝜂𝑣

)
+ 𝑣

(
2𝜁𝑎𝑠+ 𝑣

)
.

(7)

Consequently, the transfer function between the displacement 𝑥̄𝑝 of the primary structure and the force excitation 𝑓 is

𝐺𝐹↦𝑋𝑝 (𝑠) =
𝑋𝑝 (𝑠)
𝐹 (𝑠) ∕𝑘̄𝑝

= 𝐙−1
(1,1) =

𝑛 (𝑠)
𝑑 (𝑠)

, (8)

where 𝐙−1
(1,1) represents the (1,1) element of 𝐙−1, and 𝑛 (𝑠) and 𝑑 (𝑠) are polynomials in 𝑠. Furthermore, the amplitude magnfication 

factor (AMF) concerning the primary structure at the dimensionless excitation frequency 𝜔 = 𝜔̄∕𝜔̄𝑝 ⩾ 0 is dfined as

𝐴 (𝜔) = |||𝐺𝐹↦𝑋𝑝 (𝑠 = 𝑗𝜔)||| = |||| 𝑛 (𝑠 = 𝑗𝜔)𝑑 (𝑠 = 𝑗𝜔)
|||| =
√
𝑁 (𝛺)
𝐷 (𝛺)

, (9)

where 𝑗 =
√
−1, 𝑁 (𝛺) and 𝐷 (𝛺) are two polynomials in 𝛺 = 𝜔2.

2.2. Formulation of the exact 𝐻∞ optimization problem

From (7), six parameters 𝝑𝑎𝑙𝑙 =
(
𝜇, 𝜂, 𝑣, 𝜁𝑝, 𝜁𝑎, 𝜁𝑔

)
can be theoretically manipulated to enhance vibration suppression performance. 

The 𝐻∞ optimization criterion is adopted for the optimal DVA design to minimize the maximum amplitude of residual vibrations on 
the primary structure. The procedure starts with defining the 𝐻∞ norm

ℎ = ‖𝐴 (𝜔)‖∞ =max{𝐴 (𝜔)} , ℎ > 1, (10)

and the goal is to seek the parameter composition that minimizes ℎ to achieve the minimum denoted as ℎmin. The frequencies 
corresponding to the peaks of the AMF 𝐴 (𝜔) are referred to as resonance frequencies, leading to Proposition 1.

Proposition 1 (Exactly optimized AMF (EO-AMF)). The EO-AMF has two peaks of an identical minimum height ℎmin so that 𝐴
(
𝜔𝐴
)
≡

𝐴
(
𝜔𝐵
)
= ℎmin, where 𝜔𝐴 and 𝜔𝐵 are the two resonance frequencies. We let 0< 𝜔𝐴 < 𝜔𝐵 . □

Definition 1 (Potentially optimized AMF (PO-AMF)). Any AMF curve exhibiting two peaks at an identical peak height ℎ, i.e., 𝐴
(
𝜔𝐴
)
≡

𝐴
(
𝜔𝐵
)
= ℎ, is dfined as the PO-AMF. □

Remark 1. Proposition 1 stipulates that the optimization is to achieve two exactly equal resonance peaks (i.e., the so-called equal

peak optimization in [44,45,47]), indicating that the optimization is based on the typical feature of 2DOF dynamics. That is, we 
exclude the reduced cases where the DVA has a heavy stiffness 𝑘̄𝑎 and grounded damping 𝑐𝑔 so that the coupled system acts like an 
SDOF structure with one resonance peak [6]. Such cases may lead to a smaller ℎmin but compromise the reduced efficacy of vibration 
suppression (i.e., 𝐴< 1) and the high costs of mechanical components in practice. □

Clearly, all parameter compositions 𝝑𝑎𝑙𝑙 corresponding to the EO-AMF form a subset of those to the PO-AMF. The following two 
preliminary lemmas are summarized in light of Nishihara’s method [37].

Lemma 1. For any PO-AMF with a peak amplitude ℎ, the squares of its two resonance frequencies, i.e., 𝛺𝐴 = 𝜔2
𝐴

and 𝛺𝐵 = 𝜔2
𝐵

, must be 
the two real double roots of a quartic polynomial equation in 𝛺

𝑄 (𝛺,ℎ) = ℎ2𝐷 (𝛺) −𝑁 (𝛺) =
4 ∑
𝑖=0 
𝑎𝑖 (ℎ)𝛺𝑖 = 0, (11)

where 𝑎𝑖, 𝑖 = 0,1,2,3,4 are polynomials in ℎ. Notably, 𝑎0 = 𝑣4
[(
𝜇𝜂𝑣2 + 𝜂 + 1

)2
ℎ2 − (𝜂 + 1)2

]
and 𝑎4 = ℎ2.

Proof. Combining Eqs. (9) and (10), the relationship between 𝛺𝐴,𝐵 and ℎ satifies

𝑄 (𝛺,ℎ) = ℎ2𝐷 (𝛺) −𝑁 (𝛺) = 0. (12)

Besides, the independence condition of the peak ℎ concerning 𝛺, i.e., 𝑑ℎ∕𝑑𝛺 = 0, enforces

𝑑𝑄 (𝛺,ℎ)
𝑑𝛺

= 𝜕𝑄 (𝛺,ℎ)
𝜕ℎ 

𝜕ℎ 
𝜕𝛺

+ 𝜕𝑄 (𝛺,ℎ)
𝜕𝛺

= ℎ2 𝜕𝐷 (𝛺)
𝜕𝛺

− 𝜕𝑁 (𝛺)
𝜕𝛺

= 0. (13)

Considering also that 𝑄 (𝛺,ℎ) = 0 is a quartic polynomial equation and it only has two real positive roots 𝛺𝐴 and 𝛺𝐵 for the PO-AMF 
as per Definition 1, 𝛺𝐴 and 𝛺𝐵 then must be the two double roots of this equation. □
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Lemma 2. If 𝜂 = 0, any composition 𝜗𝑎𝑙𝑙 yielding the PO-AMF must be a common solution of the two equations{
𝑓1
(
𝑟, 𝜗𝑎𝑙𝑙

)
= 𝑏3

√
𝑏0 − 𝑏1 = 0,

𝑓2
(
𝑟, 𝜗𝑎𝑙𝑙

)
=
𝑏23
4 + 2

√
𝑏0 − 𝑏2 = 0,

(14)

where 𝑏𝑖, 𝑖 = 0,1,2,3 are polynomials parameterized in 
(
𝑟, 𝜗𝑎𝑙𝑙

)
, see (18) in proof for the relevant definitions.

Proof. Letting 𝜂 = 0 and defining

𝑟2 = ℎ
2 − 1
ℎ2

,0 < 𝑟 < 1, (15)

Eq. (11) can be simplfied into a monic quartic polynomial equation as

𝑄 (𝛺,ℎ)
𝜂=0
←←←←←←←←←←←←←←←→𝑄𝑠𝑖𝑚 (𝛺,𝑟) =

4 ∑
𝑖=0 
𝑏𝑖𝛺

𝑖 = 0, (16)

where 𝑏0 =𝑟2𝑣4 and 𝑏4 = 1, see also the forms of the two coefficients 𝑎0 and 𝑎4 in Eq. (11) for comparisons. Furthermore, if Eq. (16) 
has two double roots 𝛺𝐴 and 𝛺𝐵 for the parameter composition yielding the PO-AMF as per Lemma 1, it satifies

𝑄𝑠𝑖𝑚 (𝛺,𝑟) =
(
𝛺 −𝛺𝐴

)2 (
𝛺 −𝛺𝐵

)2
, (17)

leading to⎧⎪⎨⎪⎩
𝑏4 = 1, 𝑏3 = −2

(
𝛺𝐴 +𝛺𝐵

)
,

𝑏2 =𝛺2
𝐴
+ 4𝛺𝐴𝛺𝐵 +𝛺2

𝐵
,

𝑏1 = −2𝛺𝐴𝛺𝐵
(
𝛺𝐴 +𝛺𝐵

)
, 𝑏0 =𝛺2

𝐴
𝛺2
𝐵
.

(18)

Combining the coefficients in (18) leads to the two equations in (14), thus completing the proof. □

Remark 2. Given 𝜕𝑟∕𝜕ℎ > 0 as per (15), the optimization problem is to seek the point corresponding to the global minimum of 𝑟 on 
the intersection line of the two surfaces governed by the solutions of the two equations in (14). □

2.3. Issues on Nishihara’s method

The essential kernel of Nishihara’s method is Lemma 2, which cofines all the parameter compositions yielding the PO- or the EO

AMF to the common solutions of two polynomial equations that are independent of resonance frequencies. To optimize the parametric 
pair of 𝝑 =

(
𝑣, 𝜁𝑎

)
∈ 𝝑𝑎𝑙𝑙 in the reduced case 

(
𝜁𝑝, 𝜁𝑔, 𝜂

)
= (0,0,0) as in Fig. 1(b), the two equations in (14) can be integrated into a 

binary polynomial equation with the highest degree of four [37], and the variables can be further eliminated, yielding a quadratic 
polynomial equation so that closed-form solutions are available. If the primary structure is damped with 𝜁𝑝 > 0 as in Fig. 1(c), 
Nishihara’s method constructs an auxiliary equation by calculating the Jacobian matrix

𝐉 (𝑟,𝝑) =
𝜕
(
𝑓1 (𝑟, 𝜗) , 𝑓2 (𝑟, 𝜗)

)
𝜕𝝑

. (19)

The minimum condition of 𝑟 enforces 𝐉 (𝑟,𝝑) to be singular so that the number of equations obtained is equal to the number of the 
unknowns (𝑟,𝝑), and thus the optimal parameter pair 

(
𝑣, 𝜁𝑎

)
can be numerically solved.

However, solving multiple variables from multiple nonlinear (even polynomial) equations is not trivial, and obviously, the solution 
convergence highly depends on proper initial guesses [37,42]. On the other hand, such a brute-force numerical procedure can be 
conservative due to the lack of prior knowledge that the common solution corresponding to the singularity of (19) must yield the 
global minimum of 𝑟 [52]. Addressing such issues is one of the targets of the proposed optimization procedure.

2.4. Operable polynomial-based optimization and two complementary lemmas

Note that 𝜂 = 0 is the prerequisite for a polynomial-based optimization procedure. Otherwise, the term 
√
𝑏0 in Lemma 2 is irrational 

given the form of the coefficient 𝑎0 in Eq. (11). Since 𝑟 is included in 𝑏0 and since we are seeking its analytical extremum condition 
with respect to the parameter composition 𝝑𝑎𝑙𝑙 , the irrational form of 

√
𝑏0 when 𝜂 ≠ 0 implies that the mathematical properties of 

the polynomial equations cannot be used, and therefore the pure numerical seeking procedure becomes the only option. Hence, the 
condition 𝜂 = 0 holds in what follows to demonstrate the benfits of the polynomial forms, which agrees with the purpose of this work 
to establish an efficient and non-conservative exact optimization procedure. The challenges of the exact optimization when 𝜂 ≠ 0 are 
discussed in Section 7.

Next, a preparatory Lemma 3 is given to exclude the infeasible common solutions of Eq. (14). Lemma 4 directly determines the 
two resonance frequencies 

(
𝜔𝐴,𝜔𝐵

)
, thus simplifying the procedure in [37]. Note that the fixed-point method cannot analytically 

determine the resonance frequencies.
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Lemma 3. If 𝜂 = 0, any parameter composition 𝝑𝑎𝑙𝑙 that yields the PO-AMF must satisfy

𝑓3
(
𝑟, 𝜗𝑎𝑙𝑙

)
= 6𝑏3𝑏0 − 𝑏2𝑏1 ≠ 0, (20)

where 𝑏𝑖 are the polynomial coefficients dfined in Eq. (16).

Proof. The common solutions of Eq. (14) are expected to assign two double roots 𝛺𝐴 and 𝛺𝐵 to (16), so we exclude the reduced 
case where Eq. (16) has a quartic root 𝛺 =𝛺𝐴 =𝛺𝐵 , which leads to

𝑄 (Ω) =
4 ∑
𝑖=0 
𝑏𝑖Ω𝑖 =

(
Ω−Ω𝐴

)4 = 0. (21)

The coefficients 𝑏𝑖 in this reduced case satisfy{
𝑏4 = 1, 𝑏3 = −4Ω𝐴,
𝑏2 = 6Ω2

𝐴
, 𝑏1 = −4Ω3

𝐴
, 𝑏0 = Ω4

𝐴
,

(22)

which can be combined into

6𝑏3𝑏0 − 𝑏2𝑏1 = 0. (23)

Thus, any parameter composition 𝝑𝑎𝑙𝑙 that renders Eq. (16) two double roots must contradict the condition (23). □

Lemma 4. If 𝜂 = 0, the two resonance frequencies of any PO-AMF, 𝜔𝐴 and 𝜔𝐵 , 0 < 𝜔𝐴 < 𝜔𝐵 , are governed by

𝜔𝐴,𝐵 = 1
4

√
−
𝑏3
2 

∓
√
𝑏2 − 6

√
𝑏0, (24)

where 𝑏𝑖 are the polynomial coefficients dfined in Eq. (16).

Proof. The two resonance frequencies correspond to the two double roots of Eq. (16). From (18), we have{
𝛺𝐴 +𝛺𝐵 = −𝑏3∕2,

𝛺𝐴 −𝛺𝐵 = −
√
𝑏2 − 6

√
𝑏0.

(25)

Solving Eq. (25) given the transforms 𝜔𝐴 =
√
𝛺𝐴 and 𝜔𝐵 =

√
𝛺𝐵 completes the proof. □

2.5. Operable polynomial-based optimization and two complementary lemmas

Even with 𝜂 excluded, simultaneously optimizing the remaining five parameters 
(
𝜇,𝑣, 𝜁𝑝, 𝜁𝑎, 𝜁𝑔

)
is still impractical. The damping 

ratio 𝜁𝑝 is inherent in the primary structure, and so is the mass ratio 𝜇 for a given absorber mass 𝑚̄𝑎, and thus we take 
(
𝜁𝑝, 𝜇

)
as 

known. The optimization handles the three parameters 
(
𝑣, 𝜁𝑎, 𝜁𝑔

)
that correspond to the stiffness and damping of the DVA. Noting 

from (15) that 𝜕𝑟∕𝜕ℎ > 0 and denoting the optimum parameter composition for ℎmin or equivalently 𝑟min as 
(
𝑣𝑜𝑝𝑡, 𝜁𝑎,𝑜𝑝𝑡, 𝜁𝑔,𝑜𝑝𝑡

)
, the 

exact 𝐻∞ optimization problem can be formulated as

⎛⎜⎜⎝
𝑣𝑜𝑝𝑡
𝜁𝑎,𝑜𝑝𝑡
𝜁𝑔,𝑜𝑝𝑡

⎞⎟⎟⎠
T

= 
⎧⎪⎨⎪⎩ min
𝑣,𝜁𝑎,𝜁𝑔

{𝑟} , 𝑠.𝑡. ∶
⎧⎪⎨⎪⎩

0 < 𝑟 < 1
𝑓1
(
𝑟, 𝑣, 𝜁𝑎, 𝜁𝑔

)
= 0

𝑓2
(
𝑟, 𝑣, 𝜁𝑎, 𝜁𝑔

)
= 0

𝑓3
(
𝑟, 𝑣, 𝜁𝑎, 𝜁𝑔

)
≠ 0

⎫⎪⎬⎪⎭ . (26)

That is, we seek the composition 
(
𝑟min, 𝑣𝑜𝑝𝑡, 𝜁𝑎,𝑜𝑝𝑡, 𝜁𝑔,𝑜𝑝𝑡

)
. The reduced case without grounded dampers, i.e., 𝜁𝑝 = 𝜁𝑔 = 0, is well 

tackled in [37] with closed-form solutions and thus is not considered. We focus on how the two grounded damping 𝜁𝑝 and 𝜁𝑔
affect optimization and vibration suppression. Three cases 

(
𝜁𝑝 > 0, 𝜁𝑔 = 0

)
, 
(
𝜁𝑝 = 0, 𝜁𝑔 > 0

)
, and 

(
𝜁𝑝 > 0, 𝜁𝑔 > 0

)
, are elaborated for 

demonstration. Accordingly, the superscript (⋅)[𝑖] representing Case 𝑖, 𝑖 = 1,2,3, is used for discrimination.

3. Case 1: grounded damping only in the primary structure (𝜻𝒑 > 𝟎, 𝜻𝒈 = 𝟎)

Closed-form solutions are inaccessible once the primary structure is damped, and the fixed-point method cannot handle this 
case. To avoid the direct procedure of Nishihara’s method that incorporates the Jacobian matrix (19) for numerical solutions, our 
recent works [48--50,52] adopted a Sylvester resultant-based procedure to construct purely univariate polynomial equations. Such 
a procedure is complemented and modfied here using the Dixon resultant concept [53--57] for higher efficiency to cope with the 
more complex DVA model and is further studied to establish a nontrivial necessary condition for an operable exact optimization. The 
significantly improved efficiency is detailed in Section 6 by comparisons.
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3.1. Equations to be handled

The two variables to be optimized are 
(
𝑣, 𝜁𝑎

)
, and the common solutions of Eq. (14) are required for optimization. Taking 

𝑓1
(
𝑟, 𝑣, 𝜁𝑎

)
= 0 and 𝑓2

(
𝑟, 𝑣, 𝜁𝑎

)
= 0 as two polynomial equations in 𝜁𝑎 (a similar procedure holds if starting with 𝑣) yields{

𝑓
[1]
1,[𝑟,𝑣]

(
𝜁𝑎
)
=
∑2
𝑖=0 𝛼

[1]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑎 = 0,
𝑓
[1]
2,[𝑟,𝑣]

(
𝜁𝑎
)
=
∑4
𝑖=0 𝛽

[1]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑎 = 0,
(27)

where 𝛼[1]
𝑖

and 𝛽[1]
𝑖

are polynomial coefficients in (𝑟, 𝑣), and the factor 2𝑣2 corresponding to 𝑣 = 0 of Eq. (27) has been excluded 
for simplicity. Denoting the highest degree of the variable 𝜆 in the polynomial 𝑝 as 𝑑𝑒𝑔 [𝑝, 𝜆], we have max

{
𝑑𝑒𝑔

[
𝛼
[1]
𝑖
, 𝑣
]}

= 2 and 

max
{
𝑑𝑒𝑔

[
𝛽
[1]
𝑖
, 𝑣
]}

= 4. Note that no analytical common solutions of Eq. (27) exist due to the increased equation degrees and the 
coupling between variables. To avoid numerical solutions, we introduce Dixon resultant [55].

3.2. Dixon resultant concept

Dixon resultant is a concept that seeks the necessary condition for two polynomial equations to have common solutions. The Dixon 
resultant-based optimization procedure starts with constructing the Dixon polynomial,

𝛿
(
𝜁𝑎,℘

)
= 1 
𝜁𝑎 −℘

||||||
𝑓
[1]
1,[𝑟,𝑣]

(
𝜁𝑎
)

𝑓
[1]
2,[𝑟,𝑣]

(
𝜁𝑎
)

𝑓
[1]
1,[𝑟,𝑣]

(
𝜁𝑎 =℘

)
𝑓
[1]
2,[𝑟,𝑣]

(
𝜁𝑎 =℘

)|||||| , (28)

where ℘ represents an auxiliary symbol, and the highest degree of 𝛿 in ℘ is 𝑑max − 1 = 3, with

𝑑max = max
{
𝑑𝑒𝑔

[
𝑓
[1]
1,[𝑟,𝑣], 𝜁𝑎

]
, 𝑑𝑒𝑔

[
𝑓
[1]
2,[𝑟,𝑣], 𝜁𝑎

]}
. (29)

From the construction of Eq. (28), 𝛿
(
𝜁𝑎,℘

)
= 0 holds at each common solution 𝜁𝑎 of 𝑓 [1]

1,[𝑟,𝑣]
(
𝜁𝑎
)
= 0 and 𝑓 [1]

2,[𝑟,𝑣]
(
𝜁𝑎
)
= 0 regardless 

of the ℘ values. Hence, all the coefficients of ℘𝑖 , 𝑖 = 0,1,⋯𝑑max − 1, must vanish at this solution resulting in 𝑑max equations, which 
can be written in a matrix form of

𝐃 (𝑟, 𝑣)

⎡⎢⎢⎢⎢⎣
1
𝜁𝑎
⋮

𝜁
𝑑max−1
𝑎

⎤⎥⎥⎥⎥⎦
= 𝟎, (30)

where the coefficient matrix 𝐃 (𝑟, 𝑣) is known as the Dixon matrix. Clearly, 𝐃 (𝑟, 𝑣) needs to be singular for Eq. (27) to have common 
solutions of 𝜁𝑎, leading to a polynomial equation in (𝑟, 𝑉 ),

𝜁𝑎

(
𝑓
[1]
1,[𝑟,𝑣]

(
𝜁𝑎
)
, 𝑓

[1]
2,[𝑟,𝑣]

(
𝜁𝑎
))

= |𝐃 (𝑟, 𝑣)| = 𝑉 4𝑅[1]
1 (𝑟, 𝑉 ) = 0, (31)

where 𝑉 = 𝑣2, 𝑅[1]
1 is a polynomial in (𝑟, 𝑉 ), the determinant |𝐃 (𝑟, 𝑣)| is known as the Dixon resultant, and the notation 𝜆

(
𝑝1, 𝑝2

)
is 

used to denote the Dixon resultant operation between two polynomial equations 𝑝1 and 𝑝2 to eliminate 𝜆. Consequently, any common 
solution 𝜁𝑎 of Eq. (27) must correspond to at least one solution pair (𝑟, 𝑣) of Eq. (31), but the reverse is not the case since |𝐃 (𝑟, 𝑣)| = 0
holds if all the coefficients of 𝜁𝑖

𝑎
in either one of the two equations in (27) are zero, so the Dixon resultant provides a necessary 

condition for common solutions.

Remark 3. The core of the resultant concept is that two multivariate polynomial equations are transformed into a single equation 
where one variable is eliminated. In addition, the solutions (in terms of the kept variables) of the transformed equation contain those 
of the original set of equations. □

Remark 4. From (30), for two polynomials with their degrees respectively denoted as 𝑑1 and 𝑑2, the resulting Dixon matrix 𝐃
has the dimension of 𝑑max × 𝑑max, where 𝑑max = max

{
𝑑1, 𝑑2

}
, while the dimension of the corresponding widely adopted Sylvester 

matrix labeled by 𝐒 is 
(
𝑑1 + 𝑑2

)
×
(
𝑑1 + 𝑑2

)
, see also a brief comparison between such two resultant concepts in Appendix. A smaller 

dimension of the Dixon matrix means higher computational efficiency and the benfit better shows off as system dynamics become 
more complex, as to be demonstrated through experimental comparisons in Section 6.1. □

3.3. Dixon resultant-based optimization procedure

Deploying one Dixon resultant operation by eliminating 𝜁𝑎 arrives at Eq. (31), a bivariate polynomial equation containing all the 
common solutions (𝑟, 𝑉 ) of Eq. (27) regardless of 𝜁𝑎. Since 𝑉 ≠ 0, Eq. (31) is reduced to
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𝑅
[1]
1 (𝑟, 𝑉 ) =

8 ∑
𝑖=0 
𝛾
[1]
𝑖

(𝑟)𝑉 𝑖 = 0, (32)

where 𝛾 [1]
𝑖

are polynomial coefficients in 𝑟. The differential form of (32) is

𝑑𝑅
[1]
1 (𝑟, 𝑉 ) =

𝜕𝑅
[1]
1 (𝑟, 𝑉 )
𝜕𝑟 

𝑑𝑟+
𝜕𝑅

[1]
1 (𝑟, 𝑉 )
𝜕𝑉

𝑑𝑉 = 0. (33)

Therefore, the extremum condition of 𝑟 with respect to 𝑣 can be converted as

𝜕𝑟 
𝜕𝑣

= 0→ 𝜕𝑟 
𝜕𝑉

= 0

→
𝜕𝑅

[1]
1 (𝑟, 𝑉 )
𝜕𝑉

=
7 ∑
𝑖=0 

(𝑖+ 1) 𝛾 [1]
𝑖+1 (𝑟)𝑉

𝑖 =0.
(34)

The desired minimum 𝑟[1]min and the associated 
(
𝑣
[1]
𝑜𝑝𝑡

)2
must be the common solution of Eqs. (32) and (34). Then, one more resultant 

operation similar to Eq. (31) can be deployed, yielding the so-called discriminant [58] of the resultant Eq. (32)

𝑅
[1]
2,0 (𝑟) =𝑉

(
𝑅
[1]
1 (𝑟, 𝑉 ) ,

𝜕𝑅
[1]
1 (𝑟, 𝑉 )
𝜕𝑉

)
= (𝑟+ 1)4 (𝑟− 1)6 𝑟60𝑅[1]

2 (𝑟) = 0.

(35)

Since 𝑟 ∈ (0,1), any extremum of 𝑟 with respect to 𝑣 must satisfy

𝑅
[1]
2 (𝑟) =

46 ∑
𝑖=0 
𝜅
[1]
𝑖
𝑟𝑖 =0, (36)

which is a univariate polynomial equation in 𝑟 only, where 𝜅[1]
𝑖

are real constant coefficients.

Remark 5. By deploying resultant operations twice, the minimum condition of 𝑟 with respect to 
(
𝑣, 𝜁𝑎

)
, i.e.,

⎧⎪⎨⎪⎩
𝜕𝑟 
𝜕𝑣

= 0𝑎𝑛𝑑 𝜕𝑟 
𝜕𝜁𝑎

= 0, 𝑜𝑟

𝑑𝑟 = 𝜕𝑟 
𝜕𝑣
𝑑𝑣+ 𝜕𝑟 

𝜕𝜁𝑎
𝑑𝜁𝑎 = 0,

(37)

is reduced to solving a univariate polynomial equation (36) whose solutions contain all extrema of 𝑟 with respect to 𝑣. Clearly, the 
global minimum 𝑟[1]min satisfying (37) must be a solution of Eq. (36). Such a simplfication is the key to our resultant-based procedure 
to avoid the pure numerical procedure of Nishihara’s method, as mentioned in Section 2.3. □

With the univariate form of Eq. (36), a nontrivial necessary condition of an operable exact optimization problem can be established, 
given that the solutions of a univariate polynomial equation can be exhaustively determined by regular routines without the need for 
initial guess, such as calculating the standard QR decomposition and companion matrix [59], leading to Theorem 1, which presents 
a useful tool to check if the DVA is exactly optimizable.

Theorem 1 (Operable exact 𝐻∞ optimization problem). If the univariate polynomial equation 𝑅[1]
2 (𝑟) = 0 has no real solution satisfying 

𝑟 ∈ (0,1), then no parameter pair 
(
𝑣
[1]
𝑜𝑝𝑡, 𝜁

[1]
𝑎,𝑜𝑝𝑡

)
exists such that the AMF 𝐴 (𝜔) has two peaks of an identical height. That is, no solutions to 

the exact 𝐻∞ optimization problem exist for the EO-AMF. □

Proceeding from Eq. (36), the exhaustive solutions of this univariate polynomial equation are collected as

𝐫[1] =
{
𝑟|𝑅[1]

2 (𝑟) = 0,0 < 𝑟 < 1
}
. (38)

Substituting each 𝑟 ∈ 𝐫 into Eq. (32) or (34) yields a polynomial equation in 𝑉 only, and thus the associated natural frequency ratio 
𝑣 can be exhaustively solved. Similarly, plugging each obtained solution pair (𝑟, 𝑣) into either of the two equations in (27) gives a 
univariate polynomial equation in the damping 𝜁𝑎. By doing so, the solving process handles purely univariate polynomial equations 
that can be easily solved. More intuitively, such an optimization procedure is demonstrated in Fig. 2, in which two parameters (𝜗, 𝑖)
need to be specfied before executing the procedure in Fig. 2. Particularly, 𝜗 signfies the damping ratio to be optimized, and the 
other one 𝑖 is related to Case 𝑖, e.g., (𝜗, 𝑖) = (𝑎,1) is selected for Case 1.

The noteworthy aspects of the optimization procedure proposed in Fig. 2 are highlighted as follows. First, the solutions of 𝑅[𝑖]
2 (𝑟) =

0, which are 𝑟[𝑚], 𝑟[𝑚] ∈ 𝐫, are substituted into the equation 𝜕𝑅[𝑖]
1 (𝑟, 𝑉 ) ∕𝜕𝑉 = 0 instead of 𝑅[𝑖]

1 (𝑟, 𝑉 ) = 0 for solution 𝑉 in step ② since 
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Fig. 2. Univariate polynomial equation-based exact 𝐻∞ optimization using the Dixon resultant concept. Blue dashed arrows represent the preparatory steps, and red 
solid ones are the main steps of the solving process.

Fig. 3. (a). The EO-AMF with respect to 𝜇 for 𝜁𝑝 = 0.1. The resonance frequencies 
(
𝜔
[1]
𝐴
,𝜔

[1]
𝐵

)
are calculated following Lemma 3. (b). Two PO-AMFs with 𝜇 = 0.15. 

the former equation is of a lower degree. Similarly, the pair 
(
𝑟[𝑚], 𝑣

)
, which is the solution of 𝜕𝑅[𝑖]

1 (𝑟, 𝑉 ) ∕𝜕𝑉 = 0, is plugged into 
𝑓
[𝑖]
1
(
𝑟, 𝑣, 𝜁𝜗

)
= 0 for solutions of 𝜁𝜗 in step ③. Besides, all three solving steps denoted as ①, ②, and ③ handle univariate polynomial 

equations. Given that the resultant concept only provides a necessary condition for common solutions as introduced in Section 3.2

and Lemma 3 needs to be additionally satified, the two checking steps ④ and ⑤ are finally deployed. Clearly, the first returned 
solution composition must be the global optimum since the solving process is performed in the ascending order of 𝑟 ∈ 𝐫. This is a 
generalizable algorithm, and its easy application in the other two cases is demonstrated in Sections 4 and 5.

3.4. Verfication and discussion

Selecting 𝜁𝑝 = 0.1, the EO-AMF for four different mass ratios 𝜇 = [0.05,0.1,0.15,0.2] are compared in Fig. 3(a), with the associated 
parameters tabulated in Table 1. 

From Fig. 3(a), all the EO-AMF curves exhibit two peaks of an identical height and the associated resonance frequencies 
(
𝜔
[1]
𝐴
,𝜔

[1]
𝐵

)
concur with Lemma 4, thus verifying the theoretical analysis. Moreover, increasing the mass ratio 𝜇 reduces the optimized peak height 
ℎ
[1]
min, which agrees with [30,31], where lever and flywheel constructions enhance vibration suppression performance by increasing 

DVA’s inertia. However, one should notice the marginal effect of such performance enhancement. That is, a much larger increase in 
𝜇 is required for the same reduction of ℎ[1]min as 𝜇 increases, meaning that a large absorber mass 𝑚̄𝑎 is required for a given primary 
structure with a fixed mass 𝑚̄𝑝, or more complicated constructions are required to alter the DVA’s inertia. To this end, we should 
have all components that benfit vibration suppression in effect to achieve a desirably low value of the peak ℎ in case only deploying 
one of them complicates the mechanical design and assembly.

On the other hand, note from Fig. 2 that all the parameter pairs 
(
𝑣, 𝜁𝑎

)
satisfying the extremum condition 𝜕𝑟∕𝜕𝑣 = 0 can be 

determined if we do not quit this algorithm as it gives the first output, and then collect all solution compositions that pass the ‘YES’ 
channel. Taking 𝜇 = 0.15 as an example yields Fig. 3(b), where two PO-AMF curves co-exist, each of which corresponds to a local 
extremum of 𝑟. Clearly, the AMF at the smallest peak height is the EO-AMF, as marked in Fig. 3(b). This example demonstrates how 
the resultant-based optimization procedure in Fig. 2 guarantees the global optimum. Recall from Section 2.3 that Nishihara’s method 
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Table 1
Parameters associated with Fig. 3(a).

𝜇 ℎ
[1]
min 𝑟

[1]
min

(
𝑣
[1]
𝑜𝑝𝑡, 𝜁

[1]
𝑎,𝑜𝑝𝑡

) (
𝜔
[1]
𝐴
,𝜔

[1]
𝐵

)
0.05 3.0566 0.9450 (0.9138, 0.1475) (0.8508, 1.0441) 
0.10 2.6225 0.9244 (0.8619, 0.1988) (0.7944, 1.0431) 
0.15 2.3765 0.9071 (0.8174, 0.2355) (0.7509, 1.0367) 
0.20 2.2101 0.8918 (0.7780, 0.2645) (0.7145, 1.0283) 

when 𝜁𝑝 > 0 simultaneously solves multiple nonlinear equations based on the singularity of the Jacobian matrix (19). Hence, the 
solution obtained may not correspond to the global minimum of 𝑟 and, conversely, can even yield a maximum due to the lack of prior 
knowledge that the optimum composition is the unique solution of such multiple nonlinear equations. This observation, namely, the 
AMF curves with two peaks of an identical height may not be optimum, provides possible counterexamples for the optimizations that 
are only based on the equal-peak property, which is an important issue absent in the open literature [44,45,47]. Accordingly, one can 
conclude that the equal-peak optimization only provides a necessary but not sufficient condition for the global optimum, signifying 
the core benfits of modifying Nishihara’s method for seeking analytical global optimum conditions.

4. Case 2: grounded damping only in the DVA 
(
𝜻𝒑 = 𝟎, 𝜻𝒈 > 𝟎

)

Having established the Dixon resultant-based optimization procedure in Case 1, we here generalize it to another optimization 
problem where the grounded damper is only associated with the DVA so 𝜁𝑝 = 0 and 𝜁𝑔 > 0. Existing studies [30,31] show that 
approximate optima of 

(
𝑣, 𝜁𝑔

)
via the fixed-point method are available when 𝜁𝑎 = 0. Thus, depending on the existence of 𝜁𝑎, the 

discussions are divided into two aspects to exactly optimize 
(
𝑣, 𝜁𝑔

)
for comparisons.

4.1. Equations to be handled

This time, Eq. (14) is parameterized in 
(
𝑟, 𝑣, 𝜁𝑔

)
and is separated into two polynomial equations in 𝜁𝑔 in light of Section 3.1 and 

Fig. 2. When 𝜁𝑎 ≠ 0, we have{
𝑓
[2]
1,[𝑟,𝑣]

(
𝜁𝑔
)
=
∑2
𝑖=0 𝛼

[2]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑔 = 0,
𝑓
[2]
2,[𝑟,𝑣]

(
𝜁𝑔
)
=
∑4
𝑖=0 𝛽

[2]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑔 = 0,
(39)

where 𝛼[2]
𝑖

and 𝛽[2]
𝑖

are real polynomial coefficients in (𝑟, 𝑣), and max
{
𝑑𝑒𝑔

[
𝛼
[2]
𝑖
, 𝑣
]}

= max
{
𝑑𝑒𝑔

[
𝛽
[2]
𝑖
, 𝑣
]}

= 4. Note that the 

grounded damping 𝜁𝑔 arises the degree of 𝑣 in 𝛼[2]
𝑖

compared with the previous Case 1, and thus starting the resultant-based op

timization procedure with eliminating 𝜁𝑔 instead of 𝑣 benfits efficiency as per Remark 4.

With Eq. (39), selecting (𝜗, 𝑖) = (𝑔,2) in Fig. 2 yields the optimization procedure for the optimum composition 
(
𝑟
[2]
min, 𝑣

[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
. 

Specifically, the forms of the two intermediate resultant equations are signfied,⎧⎪⎨⎪⎩
𝑅
[2]
1 (𝑟, 𝑉 ) = 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦

(
𝜁𝑔

(
𝑓
[2]
1 , 𝑓

[2]
2

))
=
∑12
𝑖=0 𝛾

[2]
𝑖

(𝑟)𝑉 𝑖 = 0,

𝑅
[2]
2 (𝑟) = 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦

(
𝑉

(
𝑅
[2]
1 ,

𝜕𝑅
[2]
1
𝜕𝑉

))
=
∑70
𝑖=0 𝜅

[2]
𝑖
𝑟𝑖 = 0,

(40)

where 𝛾 [2]
𝑖

are polynomial coefficients in 𝑟, 𝜅[2]
𝑖

are real constants, and the notation 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (⋅) represents excluding the factors 
corresponding the inappropriate solutions satisfying 𝑉 ⩽ 0 and 𝑟 ∉ (0,1).

Remark 6. The required minor changes of the Dixon resultant-based optimization algorithm in Fig. 2 in input when handling Cases 
1 and 2 benfit from the generalizable core of this algorithm for all polynomial-based optimizations. □

4.2. Optimization and comparisons when 𝜁𝑎 = 0

In the reduced case 𝜁𝑎 = 0, Ren [5] derived the approximately optimized pair of 
(
𝑣, 𝜁𝑔

)
via the fixed-point method

𝑣̃
[2]
𝐹𝑃

=
√

1 
1 − 𝜇

, 𝜁
[2]
𝑔,𝐹𝑃

=

√
3𝜇

4 (2 − 𝜇)
, (41)

where the superscript ‘□̃’ represents the reduced case and the subscript (⋅)𝐹𝑃 means the fixed-point method for discrimination. The 
exact solutions are considered for comparisons. Substituting 𝜁𝑎 = 0 into Eqs. (39) yields{

𝑓
[2]
1,[𝑟,𝑣]

(
𝜁𝑔
)
= 2

(
(𝑟− 2𝜇)𝑉 − 𝑟2 − 𝜇2𝑉 2)𝑍𝑔 + (1 − 𝑟) (1 + 𝜇)𝑉 + 𝑟 (𝑟− 1) = 0,

𝑓
[2]
2,[𝑟,𝑣]

(
𝜁𝑔
)
= 4𝑉 2𝑍2

𝑔 + 4𝑉 ((𝜇 − 1)𝑉 + 4)𝑍𝑔 + 1 + 2 (𝑟− 1)𝑉 − 𝑟2 = 0,
(42)
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Fig. 4. (a). The implicit relationship between 𝜇 and 𝑟 governed by Eq. (43). (b). The zoomed plot of (a) for 𝜇 > 0. 

Table 2
Parameters associated with Fig. 5(a).

𝜇 EO-AMF Approximately optimized AMF 

ℎ̃
[2]
min

(
𝑣̃
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

) (
𝜔̃
[2]
𝐴
, 𝜔̃

[2]
𝐵

)
ℎ̃
[2]
𝐹𝑃

(
𝑣̃
[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
0.05 6.0486 (1.0267, 0.1420) (0.9337, 1.0921) 6.0531 (1.0260, 0.1387) 
0.10 4.0744 (1.0580, 0.2097) (0.9154, 1.1378) 4.0876 (1.0541, 0.1987) 
0.20 2.5645 (1.1477, 0.3360) (0.9172, 1.2008) 2.6186 (1.1180, 0.2887) 
0.30 - - - 1.9222 (1.1952, 0.3638) 

where 𝑍𝑔 = 𝜁2𝑔 . Similarly, the second resultant equation in (40) becomes

𝑅̃
[2]
2 (𝑟) =

4 ∑
𝑖=0 
𝜅̃
[2]
𝑖

(𝜇) 𝑟𝑖 = 0, (43)

in which 𝜅̃[2]
𝑖

are coefficients in the mass ratio 𝜇. Note from the forms of Eqs. (42) and (43) that no closed-form exact solution (
𝑟
[2]
min, 𝑣̃

[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
exists even if the grounded damping is with the absorber and even if the approximate solution 

(
𝑣̃
[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
has 

a quite simple form. According to Theorem 1, the existence of feasible solutions 𝑟 ∈ (0,1) of the univariate polynomial Eq. (43) is 
necessary for an operable exact optimization. In particular, the coefficients 𝜅̃[2]

𝑖
are

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜅̃
[2]
0 = 16𝜇2

(
𝜇4 − 5𝜇3 + 15𝜇2 − 5𝜇 + 1

)
,

𝜅̃
[2]
1 = −16𝜇

(
3𝜇4 − 14𝜇3 + 66𝜇2 − 21𝜇 + 4

)
,

𝜅̃
[2]
2 = −4

(
8𝜇6 − 44𝜇5 + 133𝜇4 − 170𝜇3 − 287𝜇2 + 88𝜇 − 16

)
,

𝜅̃
[2]
3 = 4

(
12𝜇5 − 54𝜇4 + 257𝜇3 − 457𝜇2 + 12𝜇

)
,

𝜅̃
[2]
4 = 16𝜇6 − 96𝜇5 + 300𝜇4 − 628𝜇3 + 469𝜇2 + 336𝜇 − 64.

(44)

Comparisons are twofold to demonstrate the benfits of the exact optimization and the grounded damping 𝜁𝑔 .

4.2.1. Comparisons with the fixed-point method

Also taking 𝜇 as a variable, Eq. (43) depicts the implicit relationship between 𝜇 and 𝑟, as shown in Fig. 4(a). The meaningful 
intervals where 𝜇 > 0 and 0 < 𝑟 < 1 are zoomed in Fig. 4(b), where a minimum of 𝑟 labeled as 𝑟𝑙𝑜𝑤 exists. Clearly, the value of 𝜇
should lie within the region where 𝑟 ⩾ 𝑟𝑙𝑜𝑤 leading to 𝜇 ∈

(
0, 𝜇𝑢𝑝

)
. Given the extremum condition 𝜕𝑟∕𝜕𝜇 = 0 and the polynomial 

form of Eq. (43), we consider the resultant equation similar to Eq. (35)

𝑅̃
[2]
3 (𝑟) =𝜇

(
𝑅̃
[2]
2 (𝜇, 𝑟) ,

𝑅̃
[2]
2 (𝜇, 𝑟)
𝜕𝑟 

)
= 𝑟5 (𝑟+ 1)7 (𝑟− 1)5

27 ∑
𝑖=0 
𝜌̃
[2]
𝑖
𝑟𝑖 = 0, (45)

where 𝜌̃[2]
𝑖

are real constant coefficients. The minimum 𝑟𝑙𝑜𝑤 = 0.8416 can be solved from Eq. (45) so that 𝜇𝑢𝑝 = 0.2813 as per Eq. (43), 
both of which agree with Fig. 4. The exactly- and approximately- optimized AMF curves for four mass ratios 𝜇 = [0.05,0.1,0.2,0.3]
are compared in Fig. 5, and the associated parameters are detailed in Table 2.

The solid curves in Fig. 5 represent the EO-AMF, and the observed two equal peaks again verify the proposed exact optimization 
procedure. The two resonance frequencies 

(
𝜔̃
[2]
𝐴
, 𝜔̃

[2]
𝐵

)
in Table 2 are calculated following Lemma 4 and agree with Fig. 5. The 
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Fig. 5. (a). Comparisons between the exactly- (solid) and approximately- (dashed) optimized AMF curves. (b) and (c) are zoomed plots of (a) for 𝜇 = 0.05 and 𝜇 = 0.2, 
respectively.

Fig. 6. (a). EO-AMF curves for 𝜇 = [0.26,0.2655258,0.27]. (b) and (c) are zoomed plots of (a) for 𝜇 = 0.2655258 and 𝜇 = 0.27, respectively. 

parameter ℎ̃[2]
𝐹𝑃

in Table 2 represents the maximum of the AMF optimized by the fixed-point method with 
(
𝑣̃
[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
. From Fig. 5, 

the approximately optimized AMFs are close to the EO-AMFs for a small 𝜇, and the accuracies of the fixed-point method decrease 
as 𝜇 increases. Meanwhile, the optimized peaks 

(
ℎ̃
[2]
min, ℎ̃

[2]
𝐹𝑃

)
reduce with 𝜇, and obviously, the DVA tuned with the exact optimum 

pair of 
(
𝑣̃
[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
always renders a benficially lower AMF peak height (i.e., ℎ̃[2]min < ℎ̃

[2]
𝐹𝑃

). Note from Fig. 4(b) that no solutions 
𝑟 of Eq. (43) exist when 𝜇 > 𝜇𝑢𝑝 = 0.2813, and it is verfied in Fig. 5(a) and Table 2, where the exact 𝐻∞ optimization problem 
remains unsolved for 𝜇 = 0.3. This example shows that the cases where the fixed-point method is applicable do not mean that the 
exact optimization is operable.

To investigate the absence of exact solutions when 𝜇 > 𝜇𝑢𝑝, we consider three cases 𝜇 = [0.26,0.2655258,0.27], in which 
𝜇 = 0.2655258 is the exact upper bound for operable exact optimization and is obtained by dense numerical sweeping of 𝜇. The 
corresponding EO-AMF curves and the related key parameters are incorporated in Fig. 6.

From Fig. 6(a), the exact optimization for 𝜇 = 0.26 results in two equal peaks, and the according resonance frequencies agree with 
Lemma 4 as expected. When increasing to 𝜇 = 0.2655258, the associated EO-AMF curve is zoomed in Fig. 6(b), which is the critical 
moment when the two resonance peaks and the antiresonance peak are of the same height. In this case, the theoretical minimum peak 
as per (15), i.e., ℎ̃[2]min = 1.99251, and the two resonance frequencies as per Lemma 4 still well predict system responses. However, when 
further increasing to 𝜇 = 0.27 < 𝜇𝑢𝑝, as zoomed in Fig. 6(c), the theoretical prediction ℎ̃[2]min = 1.95504 fails since the AMF only exhibits 
a single peak, agreeing with Fig. 5. This observation verfies Lemma 3 and the necessary condition provided by Theorem 1. Clearly, 
with Theorem 1, one can now analytically locate near the exact upper bound before numerical sweeping to reduce computational 
costs, another advantage of the proposed resultant-based procedure, in addition to the simplfied nonconservative solving process.

The exactly optimized compositions 
(
ℎ̃
[2]
min, 𝑣̃

[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
and the approximate ones 

(
ℎ̃
[2]
𝐹𝑃
, 𝑣̃

[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
via the fixed-point method 

with sweeping 𝜇 ∈ [0.05,0.5] are compared in Fig. 7. From Fig. 7(a), exact solutions if exist always yield a smaller maximum peak 
height ℎ̃[2]min than the approximate one ℎ̃[2]

𝐹𝑃
, and the differences between such two increase as 𝜇 grows, a direct result of the enlarged 

difference between 
(
𝑣̃
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
and 

(
𝑣̃
[2]
𝐹𝑃
, 𝜁

[2]
𝑔,𝐹𝑃

)
, as shown in Fig. 7(b) and (c). Furthermore, the newly obtained upper bound 

𝜇 = 0.2655 < 𝜇𝑢𝑝 for the operable exact optimization concurs with Fig. 4(b) and Fig. 6. The differences in optimization operability 
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Fig. 7. (a). 
(
ℎ
[0]
min , ℎ̃

[2]
𝐹𝑃
, ℎ̃

[2]
min

)
versus 𝜇. (b). 

(
𝑣
[0]
𝑜𝑝𝑡, 𝑣̃

[2]
𝐹𝑃
, 𝑣̃

[2]
𝑜𝑝𝑡

)
versus 𝜇. (c). 

(
𝜁
[0]
𝑎,𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝐹𝑃

, 𝜁
[2]
𝑔,𝑜𝑝𝑡

)
versus 𝜇. Den Hartog’s DVA in (a, b, d) refers to Fig. 1(b). (d). An indirect 

rflection of the variations of the optimized 𝑐𝑔 given 𝑐𝑔 = 2𝑚̄𝑎𝜔̄𝑎𝜁𝑔 .

in the exact and approximate cases indicate that the AMF has different sensitivities to such two cases, even though the resulting 
optimized peak height ℎ does not differ much in two cases. To this end, Theorem 1 helps guide the design of a DVA that can be 
exactly optimized or customize the selection of the optimization method to be used. At last, Fig. 7(d) rflects the variations of 𝑐𝑔 in 
light of 𝑐𝑔 = 2𝑚̄𝑎𝜔̄𝑎𝜁𝑔 . Combining with Fig. 6(b) and Fig. 7(c, d), one can find that a single peak appears when 

(
𝑐𝑔, 𝑘̄𝑎

)
are large for 

a given 𝜇 or 𝑚̄𝑎, see also Remark 1.

4.2.2. Comparisons with Den Hartog’s DVA

Note that the only difference between the DVA considered here with 
(
𝜁𝑝 = 𝜁𝑎 = 0, 𝜁𝑔 > 0

)
and the classic Den Hartog’s DVA shown 

in Fig. 1(b) is the position of the absorber damper. The damper of the present DVA is connected to the ground, while that of Den 
Hartog’s DVA is connected to the primary structure (i.e., 𝜁𝑎 > 0, 𝜁𝑔 = 𝜁𝑝 = 0). The exactly optimized parameter pair 

(
𝑣, 𝜁𝑎

)
of Den 

Hartog’s DVA is explicitly given in [41], which is denoted as⎧⎪⎪⎨⎪⎪⎩
𝑣
[0]
𝑜𝑝𝑡 =

2 
1+𝜇

√
2
[
2(𝜇+2)

√
3𝜇+4+9𝜇2+23𝜇+16

]
3
(
27𝜇2+80𝜇+64

) ,

𝜁
[0]
𝑎,𝑜𝑝𝑡 =

1
4

√
8+9𝜇−4

√
4+3𝜇

𝜇+1 .

(46)

Accordingly, the peak height of the EO-AMF associated with Den Hartog’s DVA is labeled as ℎ[0]min . The optimized parameter 

composition 
(
ℎ
[0]
min, 𝑣

[0]
𝑜𝑝𝑡, 𝜁

[0]
𝑎,𝑜𝑝𝑡

)
is superposed as the magenta dotted curves in Fig. 7. From Fig. 7(a), the optimized DVA with grounded 

damping 𝜁𝑔 outperforms that with the damping 𝜁𝑎 between the absorber and primary structure, as featured in the relationship of 
ℎ̃
[2]
min < ℎ̃

[2]
𝐹𝑃
< ℎ

[0]
min, agreeing with results in [5]. On the other hand, the optimized parameter pairs are compared in Fig. 7(b) and (c), 

where the larger values of the pairs 
(
𝜁
[2]
𝑔,𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝐹𝑃

)
and 

(
𝑣̃
[2]
𝑜𝑝𝑡, 𝑣̃

[2]
𝐹𝑃

)
than the associated values of 

(
𝑣
[0]
𝑜𝑝𝑡, 𝜁

[0]
𝑎,𝑜𝑝𝑡

)
mean that the optimized 

DVA with grounded damping 𝜁𝑔 exhibits harder dynamical characteristics (i.e., larger stiffness 𝑘̄𝑎 and damping 𝑐𝑎), yielding a more 
compact DVA working space. Such benfits are more apparent as the mass ratio 𝜇 or equivalently the absorber mass 𝑚̄𝑎 increases. 
Hence, connecting the DVA damper to the ground, if applicable, is recommended for protecting both the primary structure and the 
DVA. The combined effects of 𝜁𝑎 and 𝜁𝑔 are evaluated next.

4.3. Optimization when 𝜁𝑎 > 0

No approximate solutions exist when the two damping 𝜁𝑎 and 𝜁𝑔 take effect simultaneously. The optimization is twofold to benfit 
demonstration. We first optimize 𝜁𝑔 for a given 𝜁𝑎, then we consider the reversed case for the optimal 𝜁𝑎. Proceeding from Fig. 5, the 
EO-AMF by optimizing 

(
𝑣, 𝜁𝑔

)
for 𝜇 = [0.1,0.2] and several 𝜁𝑎 values are shown in Fig. 8(a).

Once 𝜁𝑎 is effective, Eqs. (39) and (40) are used for optimizing 
(
𝑣, 𝜁𝑔

)
, and accordingly, the optimized parameters are denoted 

as 
(
𝑣
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
. From Fig. 8(a), increasing 𝜁𝑎 unfavorably raises the optimized peak heights regardless of 𝜇, again showing that 

putting more weights on the grounded damping 𝜁𝑔 benfits DVA performance. To further clarify this, we optimize 𝜁𝑎 with sweeping 
𝜁𝑔 following a procedure similar to Fig. 2, leading to Fig. 8(b) and (c), where the solid magenta curves are with 𝜁𝑔 = 0 representing 
the EO-AMF corresponding to Den Hartog’s DVA, and the blues ones concur with those in Fig. 8(a).

From Fig. 8(b) and (c), the EO-AMF exhibits lower peaks as 𝜁𝑔 increases by converging to the reduced case with 𝜁𝑎 = 0, and then no 
solutions exist once 𝜁𝑔 > 𝜁

[2]
𝑔,𝑜𝑝𝑡. Hence, an additional energy-consuming component does not necessarily mean an improvement in the 
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Fig. 8. (a). EO-AMF with 
(
𝑣
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
for 𝜁𝑎 = [0,0.04,0.06,0.08,0.1]. The solid blue two are with 𝜁𝑎 = 0. (b-c). EO-AMF with 

(
𝑣
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑎,𝑜𝑝𝑡

)
for given values of 𝜁𝑔 . The 

solid magenta and blue ones are with 𝜁𝑔 = 0 and 𝜁𝑎 = 0, respectively.

vibration suppression performance from the perspective of 𝐻∞ optimization. This counter-intuitive observation provides guidance 
for the practical optimal DVA design, which is to reduce the damping 𝜁𝑎 between the DVA and the primary structure, and in the 
meantime, increase DVA’s grounded damping 𝜁𝑔 as much as possible. Note, however, that possible constraints for this in engineering 
practice might be the difficulty in attaching the DVA components to the ground.

On the other hand, the results in Fig. 8(a-c) imply that no parameter composition 
(
𝑣, 𝜁𝑎, 𝜁𝑔

)
exists to simultaneously satisfy the 

two extremum conditions 𝜕𝑟∕𝜕𝜁𝑎 = 0 and 𝜕𝑟∕𝜕𝜁𝑔 = 0 since the peak heights of the EO-AMFs vary monotonously with respect to 𝜁𝑎 and 
𝜁𝑔 until no exact solutions exist. That is, no analytical solving procedure can directly yield the exact optimal composition of 

(
𝑣, 𝜁𝑎, 𝜁𝑔

)
or the associated EO-AMF, and a feasible calculating procedure for this is to optimize one of the two damping 

(
𝜁𝑎, 𝜁𝑔

)
by sweeping 

the other one as in Fig. 8. Clearly, the given results show that optimizing 𝜁𝑔 with a fixed 𝜁𝑎 = 0 leads to the best DVA performance 
for lower EO-AMF peak heights.

5. Case 3: grounded damping in both primary structure and DVA 
(
𝜻𝒑 > 𝟎, 𝜻𝒈 > 𝟎

)

Both grounded dampings 𝜁𝑝 and 𝜁𝑔 are now activated, and the associated optimized DVA is compared to those in Fig. 1(b-e). Since 
introducing 𝜁𝑎 partially neutralizes the benfits of 𝜁𝑔 as per Section 4.3, we optimize 

(
𝑣, 𝜁𝑔

)
while fixing 𝜁𝑎 = 0. The optimization 

can still be directly generalized from Fig. 2, in which the equations to be handled are updated as follows.

5.1. Equations to be handled

With 
(
𝜁𝑝 > 0, 𝜁𝑔 > 0, 𝜁𝑎 = 0

)
, Eq. (14) can be separated into two polynomial equations in 𝜁𝑔 in the forms of{

𝑓
[3]
1,[𝑟,𝑣]

(
𝜁𝑔
)
=
∑2
𝑖=0 𝛼

[3]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑔 = 0,
𝑓
[3]
2,[𝑟,𝑣]

(
𝜁𝑔
)
=
∑4
𝑖=0 𝛽

[3]
𝑖

(𝑟, 𝑣) 𝜁𝑖𝑔 = 0,
(47)

where 𝛼[3]
𝑖

and 𝛽[3]
𝑖

are polynomial coefficients in (𝑟, 𝑣), and max
{
𝑑𝑒𝑔

[
𝛼
[3]
𝑖
, 𝑣
]}

=max
{
𝑑𝑒𝑔

[
𝛽
[3]
𝑖
, 𝑣
]}

= 4. Substituting Eq. (47) into 
the associated equations in Fig. 2 and selecting (𝜗, 𝑖) = (𝑔,3), the two intermediate resultant equations take the updated forms of⎧⎪⎨⎪⎩

𝑅
[3]
1 (𝑟, 𝑉 ) = 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦

(
𝜁𝑔

(
𝑓
[3]
1 , 𝑓

[3]
2

))
=
∑10
𝑖=0 𝛾

[3]
𝑖

(𝑟)𝑉 𝑖 = 0,

𝑅
[3]
2 (𝑟) = 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦

(
𝑉

(
𝑅
[3]
1 ,

𝜕𝑅
[3]
1
𝜕𝑉

))
=
∑62
𝑖=0 𝜅

[3]
𝑖
𝑟𝑖 = 0,

(48)

where 𝛾 [3]
𝑖

are coefficients in 𝑟, 𝜅[3]
𝑖

are real constants, and the function 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (⋅) is consistent with that in Eqs. (40). The obtained 
optimum parameter composition for a given 𝜁𝑝 is denoted as 

(
𝑟
[3]
min, 𝑣

[3]
𝑜𝑝𝑡, 𝜁

[3]
𝑔,𝑜𝑝𝑡

)
.

5.2. Comparisons with existing DVAs

Selecting 𝜇 = 0.05, the resulting EO-AMF curves for 𝜁𝑝 = 0 and 𝜁𝑝 = 0.1 are respectively shown as the solid red and cyan curves 
in Fig. 9(a), where the equal-peak features and the resonance frequencies again verify the presented theoretical analysis. Besides, 
with the same 𝜇 and with the grounded stiffness removed to streamline with the condition 𝜂 = 0 of Section 2, the optimized AMF 
associated with the classic DVA by Den Hartog [2], the lever-type DVA by Shen et al. [30], and the flywheel-type DVA by Baduidana 
et al. [31] are also superposed for comparisons. In particular, Den Hartog’s DVA is exactly optimized by Eq. (46), and Shen’s and 
Baduidana’s DVAs are optimized by the fixed-point method following the associated references, with
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Fig. 9. (a). Comparisons of optimized AMFs for various DVAs listed in Table 3. (b). The peak values of the AMF curves in (a). 

Table 3
Parameters associated with Fig. 9(a).

DVAs 𝜁𝑝 𝐿1 or 𝐿2 Optimized parameters ℎ

Den Hartog (a) 0 -
(
𝑣
[0]
𝑜𝑝𝑡, 𝜁

[0]
𝑎,𝐹𝑃

)
= (0.9524,0.1339) 6.4079 

Shen’s (b) 0 
√
2

(
𝑣
[𝐿]
𝐹𝑃
, 𝜁

[𝐿]
𝑔,𝐹𝑃

)
= (1.0615,0.2214) 4.0875 

Baduidana’s (c)) 0 
√
2

(
𝑣
[𝐹 ]
𝐹𝑃
, 𝜁

[𝐹 ]
𝑔,𝐹𝑃

)
= (1.8787,0.2136) 3.1796 

DVA in Case 1 (d) 0.1 -
(
𝑣
[1]
𝑜𝑝𝑡, 𝜁

[1]
𝑎,𝑜𝑝𝑡

)
= (0.9138,0.1476) 3.0567 

DVA in Case 2 (e) 0 -
(
𝑣̃
[2]
𝑜𝑝𝑡, 𝜁

[2]
𝑔,𝑜𝑝𝑡

)
= (1.0267,0.1420) 6.0486 

DVA in Case 3 (f ) 0.1 -
(
𝑣
[3]
𝑜𝑝𝑡, 𝜁

[3]
𝑔,𝑜𝑝𝑡

)
= (1.0021,0.1615) 2.9435 

⎧⎪⎪⎨⎪⎪⎩
𝑣
[𝐿]
𝐹𝑃

=
√

1 
1−𝐿21𝜇

,

𝜁
[𝐿]
𝑎,𝐹𝑃

=

√
3𝐿21𝜇

8−4𝐿21𝜇
,

⎧⎪⎪⎨⎪⎪⎩
𝑣
[𝐹 ]
𝐹𝑃

=
√

1+𝐿22
1−𝜇

(
1+𝐿22

) ,
𝜁
[𝐹 ]
𝑔,𝐹𝑃

=

√√√√ 3𝜇
(
1+𝐿22

)2
4𝐿42

[
2−𝜇

(
1+𝐿22

)] ,
(49)

where the two superscripts (⋅)[𝐿] and (⋅)[𝐹 ] denote the lever- and flywheel-type DVAs, respectively, 𝐿1 = 𝑙1∕𝑙2 and 𝐿2 = 𝑟̄1∕𝑟̄2 are 
amplfication ratios, see Fig. 1 for the definitions of the four lengths 

(
𝑙1, 𝑙2, 𝑟̄1, 𝑟̄2

)
. Note from the form of Eq. (49) that such structural 

modfications into the DVA function as effects of an inerter to alter DVA’s equivalent proof mass (i.e., 𝜇 is amplfied), as afore

mentioned. With 𝐿1 = 𝐿2 =
√
2, the parameters and peak heights associated with Fig. 9(a) are detailed in Fig. 9(b) and Table 3, 

respectively. 
From Fig. 9(a) and (b), the peak height of the optimized AMF corresponding to the classic Den Hartog’s DVA is sequentially reduced 

by modifying its construction to Shen’s (b) and then Baduidana’s (c) DVAs, thus enhancing the vibration suppression performance. In 
comparison, the optimized DVA in Case 1 with 

(
𝜁𝑎 > 0, 𝜁𝑔 = 0

)
is also considered, leading to the EO-AMF denoted by (d). The lower 

peak height of the AMF (d) than those of the two (b) and (c) reveals the strength of the damping 𝜁𝑝 of the primary structure in vibration 
suppression. That is, by injecting slight damping into the primary structure, further enhanced vibration suppression performance can 
be achieved without the need for structural modfications in DVA. Note also that Shen’s (b) and Baduidana’s (c) DVAs require an 
additional fulcrum for installing the lever and the flywheel, which, however, can be inaccessible in practice. On the other hand, 
suppressing the peak height by unduly raising the two amplfication ratios 𝐿1 and 𝐿2 requires architectural space and can lead to 
fractures and failures on the fulcrum, and a similar conclusion holds if we directly adopt the inerter component. Hence, optimizing a 
DVA with ignoring the damping 𝜁𝑝 of the primary structure or assuming that 𝜁𝑝 is small can lead to conservative results for both the 
optimization method and the optimized vibration suppression performance. Furthermore, the damping 𝜁𝑝 can also enhance the DVA 
performance in Case 2 so that the EO-AMF is suppressed from (e) to (f ), the peak height of which is the lowest among the shown 
cases yielding the best performance.

6. Algorithm details and experimental comparisons for computational efficiency

More details on the implementation of the Dixon resultant-based exact optimization procedure proposed in Fig. 2 are introduced 
in this section. Moreover, we demonstrate the improved computational efficiency of the Dixon resultant compared with the previously 
adopted Syvester’s one in [48--50,52], as well as the computational benfits of such a univariate-polynomial-equation-based procedure 
over Nishihara’s numerical method [37].
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Table 4
Average computational costs of applying Dixon and Sylvester resultants for the results of Fig. 3(a).

Constructing 𝑅[1]
1 (𝑟, 𝑉 ) Constructing 𝑅[1]

2 (𝑟)

Dimension of 𝐒 or 𝐃 Memory used CPU time used Dimension of 𝐒 or 𝐃 Memory used CPU time used 
Sylvester-type 6 × 6 277.3 KiB < 1 ns 15 × 15 197.76 MiB 0.507 s 
Dixon-type 4 × 4 19.32 KiB < 1 ns 8 × 8 9.64 MiB < 1 ns

Table 5
Average computational costs of Dixon and Sylvester resultants for the results of Fig. 8(a-c) with 𝜁𝑎, 𝜁𝑔 > 0.

Constructing 𝑅[2]
1 (𝑟, 𝑉 ) Constructing 𝑅[2]

2 (𝑟)

Dimension of 𝐒 or 𝐃 Memory used CPU time used Dimension of 𝐒 or 𝐃 Memory used CPU time used 
Sylvester-type 6 × 6 500.76 KiB < 1 ns 23 × 23 437.29 MiB 0.903 s 
Dixon-type 4 × 4 17.12 KiB < 1 ns 12 × 12 195.80 MiB 0.172 s 

Table 6
Average computational costs of Dixon and Sylvester resultants for the EO-AMF (f ) in Fig. 9 with 𝜁𝑝, 𝜁𝑔 > 0.

Constructing 𝑅[3]
1 (𝑟, 𝑉 ) Constructing 𝑅[3]

2 (𝑟)

Dimension of 𝐒 or 𝐃 Memory used CPU time used Dimension of 𝐒 or 𝐃 Memory used CPU time used 
Sylvester-type 6 × 6 238.09 KiB < 1 ns 19 × 19 337.65 MiB 0.544 s 
Dixon-type 4 × 4 15.02 KiB < 1 ns 10 × 10 11.76 MiB 0.016 s 

All computational works are performed on a standard laptop with a 2.2 GHz 13th Gen Intel i9-13900HX CPU and 16 GB RAM, and 
MAPLE 2023 and MATLAB 2023a are used as software platforms. In addition, no elaborate codes and toolboxes are used to benfit 
comparisons.

6.1. Comparisons between Dixon and Sylvester resultants

Revisiting Fig. 2, the resultant operation is deployed twice to trigger the solving process, i.e., the polynomial 𝑅[𝑖]
2 (𝑟), 𝑖 = 1,2,3. The 

excluded factors of each polynomial equation corresponding to inappropriate solutions with 𝑟 ∉ (0,1) and 𝑉 < 0 are determined using 
the command 𝐠𝐜𝐝 (greatest common divisor of polynomials), which is well embedded in both MAPLE and MATLAB. Replacing the 
Dixon matrix in the constructing process with Syvester’s one results in a Syvester resultant-based optimization procedure. Comparisons 
in light of [53] are given to show the strength of the newly introduced Dixon matrix.

With MAPLE, the average computational costs in the constructing process for the three Cases given in Sections 3, 4, and 5 are 
compared in Tables 4, 5, and 6, respectively, where the costs of memory and CPU time are measured by the built-in command 𝐔𝐬𝐚𝐠𝐞, 
and all variables except for the ones to be optimized are numerically evaluated before operations to reduce symbolic calculations. The 
benfits of Dixon resultant are apparent from Tables 4, 5, and 6, where the memory and CPU time used for constructing 𝑅[𝑖]

2 (𝑟) , 𝑖 =
1,2,3 by Dixon matrix are respectively decreased by more than 50% and 80% compared with those based on Sylvester matrix. Clearly, 
such benfits can be more obvious if the EO-AMF corresponding to multiple parameter compositions are required, exemplfied by 
the optimizing produce discussed in Fig. 8. On the other hand, the computational costs are highly related to the matrix dimension, 
which is further related to the number of the resultant operations. Hence, the Sylvester resultant-based calculations may crash or 
halt in more involved cases, for instance, the three-element DVA given in [42], considering that three parameters of this DVA can be 
optimized for the EO-AMF, and thus a minimum of three resultant operations is required.

6.2. Comparisons between different solving procedures

As mentioned in Section 2.3 and demonstrated in Fig. 2, the given resultant-based optimization procedure is non-conservative 
to complement Nishihara’s method [37]. Having established the univariate polynomial equations to be handled in Section 6.1, we 
compare the computational costs of such two methods in the solving process using MATLAB.

No closed-form solutions exist if either one of the grounded damping 𝜁𝑔 or 𝜁𝑝 is introduced. To this end, Nishihara’s method 
simultaneously solves three ternary equations, i.e., the two in Eq. (14) plus the one resulting from the Jacobian matrix (19). The 
command 𝐯𝐩𝐚𝐬𝐨𝐥𝐯𝐞, which can exhaustively detect solutions of a set of polynomial equations within a given range, is used to guarantee 
the global minimum condition. Besides, if given an initial guess, such as the pair 

(
𝑣
[0]
𝑜𝑝𝑡, 𝜁

[0]
𝑎,𝑜𝑝𝑡

)
in (46) for the optimization in Case 1 

as in [37], the command 𝐟𝐬𝐨𝐥𝐯𝐞 that finds the solution nearest to the initial guess is available for Nishihara’s method, and clearly, in 
this case, a proper initial guess is critical for the global minimum condition.

Since the solving steps of Fig. 2 handle purely univariate polynomial equations, the more concise command 𝐫𝐨𝐨𝐭𝐬, which routinely 
calculates the standard QR decomposition and companion matrix [59], can be deployed instead for higher efficiency. In the test, (
𝑣
[0]
𝑜𝑝𝑡, 𝜁

[0]
𝑎,𝑜𝑝𝑡

)
is used as the initial guess for the optimization in Case 1, the approximate solution 

(
𝑣
[𝐿]
𝐹𝑃
, 𝜁

[𝐿]
𝑔,𝐹𝑃

)
with 𝐿1 = 1 given 
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Table 7
Average computational time cost when using different solving methods. ‘NIG’ and ‘GIG’ mean ``No initial guesses'' and 
“Given initial guesses'', respectively.

Cases Nishihara’s method 
(𝐯𝐩𝐚𝐬𝐨𝐥𝐯𝐞, NIG)

Nishihara’s method 
(𝐟𝐬𝐨𝐥𝐯𝐞, GIG)

Our method 
(𝐫𝐨𝐨𝐭𝐬, NIG)

Our method 
(𝐟𝐬𝐨𝐥𝐯𝐞, GIG)

Case 1 5.858 s 0.153 s 0.171 s 0.044 s
Case 2 (𝜁𝑎 ≠ 0

)
No solutions 0.214 s 0.483 s 0.087 s

Case 3 (EO-AMF (f ) in Fig. 9(a)) 24.342 s 0.177 s 0.191 s 0.053 s

in (49) is used for Cases 2 and 3, and the initial guess of 𝑟 is consistently set as 𝑟 = 0.9. The resulting time costs of the mentioned 
calculating methods, measured by the embedded command pair 𝐭𝐢𝐜− 𝐭𝐨𝐜, are compared in Table 7.

From Table 7, the efficiency of our resultant-based method is apparent when no initial guesses (NIG) are given. Although its time 
cost, in comparison, is slightly increased if Nishihara’s method is given initial guesses (GIG), the time-cost magnitudes of these two 
methods are at the same level. Furthermore, once our resultant-based method receives an initial guess for each univariate polynomial 
equation, the resulting time cost can be suppressed to less than 0.1 s, the shortest among the shown cases. Note that getting a proper 
initial guess is not easy as the DVA construction varies or becomes more complex, and therefore, our resultant-based method, which 
guarantees the conditions for global optimum and convergence with no need for initial guesses, provides a robust solution for the 
exact 𝐻∞ optimization. This feature is also the basis of generalizing this resultant-based procedure from the reduced Case 1 to Cases 
2 and 3 and then to more involved optimization models.

Remark 7. Our exact resultant-based optimization procedure requires that the equations to be handled are polynomial, e.g., Eqs. (27), 
(39), and (47). The required sufficiently low computational costs shown above compensate for the possible concerns that the exact 
solutions are of non-closed forms while limitedly improving the DVA performance compared with the results of the fixed-point 
method. Besides, our method can handle the cases where the damping in the primary structure cannot be ignored. However, such 
conclusions do not mean that exact solutions should always be pursued given that they may not exist (see Fig. 7) or are hard to 
have (when 𝜂 ≠ 0). The core of our method in addition to the high efficiency and non-conservativeness is the characterization of the 
behaviors of exact solutions so that one can customize the optimization methods for different DVA variants. □

7. Remarks on the exact optimization when 𝜼≠ 𝟎

As mentioned, all exact optimizations in this work are based on the condition 𝜂 = 0 so that polynomial equations can be constructed 
for simplfication. Some further considerations are given for the exact optimization problem when 𝜂 ≠ 0. Taking 𝜂 into account and 
considering that 𝜁𝑎 dilutes the benfits of 𝜁𝑔 as per Section 4.3, we have three parameters 

(
𝑣, 𝜁𝑔, 𝜂

)
to be optimized. In this case, 

Lemma 2 cannot be used, and the equal-peak conditions for numerical exact optimization are

⎧⎪⎪⎨⎪⎪⎩
𝜕𝐴
(
𝜔,𝑣,𝜁𝑔 ,𝜂

)
𝜕𝜔 ∣

𝜔=𝜔𝐴
= 0,

𝜕𝐴
(
𝜔,𝑣,𝜁𝑔 ,𝜂

)
𝜕𝜔 ∣𝜔=𝜔𝐵= 0,

𝐴
(
𝜔𝐴,𝑣, 𝜁𝑔, 𝜂

)
−𝐴

(
𝜔𝐵,𝑣, 𝜁𝑔, 𝜂

)
= 0,

(50)

where 𝜔𝐴 and 𝜔𝐵 are the two resonance frequencies. Furthermore, the minimum condition of the peak height leads to

⎧⎪⎪⎨⎪⎪⎩

𝜕ℎ
(
𝜔,𝑣,𝜁𝑔 ,𝜂

)
𝜕𝑣 ∣𝜔=𝜔𝐴=𝜔𝐵= 0, 𝑜𝑟

𝜕ℎ
(
𝜔,𝑣,𝜁𝑔 ,𝜂

)
𝜕𝜁𝑔

∣
𝜔=𝜔𝐴=𝜔𝐵

= 0, 𝑜𝑟
𝜕ℎ
(
𝜔,𝑣,𝜁𝑔 ,𝜂

)
𝜕𝜂

∣𝜔=𝜔𝐴=𝜔𝐵= 0,

(51)

or all three equations in (51) hold. Consequently, five unknowns 
(
𝜔𝐴,𝜔𝐵, 𝑣, 𝜁𝑔, 𝜂

)
are governed by three equations (Eq. (50)) at least 

and six equations (Eqs. (50) and (51)) at most, leading to a non-convex optimization problem. The main difficulty is that the form of 
ℎ, which depicts the maximum of the AMF as dfined in (10), is unclear and is related to the composition 

(
𝑣, 𝜁𝑔, 𝜂

)
. When 𝜁𝑝 = 𝜁𝑎 = 0, 

the fixed-point method yields approximate solutions. To avoid brute-force sweeping procedures for the exact optimization problem 
governed by Eqs. (50) and (51) regardless of the values of 

(
𝜁𝑝, 𝜁𝑎

)
, more delicate calculation tools and optimization procedures 

are required. On the other hand, one may expect better DVA performance in the case with negative grounded stiffness 𝜂 < 0, e.g., 
[30,31], which, however, requires specific mechanical design in practical realization [60]. That is, taking 𝜂 or its equivalence as a 
constant coefficient of displacement can be inappropriate, which further complicates the optimization. All the above issues deserve 
to be further investigated in future work.
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8. Conclusions

Based on a general 2DOF vibration absorption system, we investigate the parametric effects on the less-reported operability of the 
exact 𝐻∞ optimization and on the vibration suppression to achieve the optimal DVA design. Accordingly, a Dixon resultant-based 
optimization procedure is proposed to complement Nishihara’s numerical method and the widely adopted approximate fixed-point 
method, aiming to establish a non-conservative, efficient, easy-to-implement, and systematic framework for DVA optimization. The 
main results are as follows.

1). For optimization operability:

• Numerical procedures are the only solution for the exact 𝐻∞ optimization if the DVA has a grounded stiffness with 𝜂 ≠ 0, 
regardless of the values of the damping 𝜁𝑝 of the primary structure.

• By exclusively constructing and solving univariate polynomial equations, a necessary condition for the operably exact optimiza

tion is established in Theorem 1. This benfits the design of an exactly optimizable DVA or customizes the selection of the 
optimization methods to be used, thus maximizing the vibration suppression performance.

• Applying Dixon resultant rather than Sylvester’s can reduce computational time by more than 80%, and such benfits can be 
more apparent as the DVA cofiguration or system dynamics become more complex.

• If the primary structure is damped (i.e., 𝜁𝑝 > 0) as in Case 1, the AMF curve exhibiting two peaks of an identical height may be 
locally optimum. Thus, numerical optimization only based on the equal-peak condition can be conservative.

• If the DVA has a grounded damping 𝜁𝑔 as in Case 2, exact optimization may only be operable in a certain range, which can be 
checked by Theorem 1. Moreover, an optimization that can be handled by the fixed-point method does not necessarily lead to 
exact solutions. Besides, no analytical conditions exist to simultaneously optimize the three 

(
𝑣, 𝜁𝑎, 𝜁𝑔

)
.

2). For the optimum vibration suppression performance:

• Damping 𝜁𝑎 between the DVA and the primary structure compromises the benfits of the grounded damping 𝜁𝑔 , indicating that 
an additional energy-consuming component does not always improve DVA performance. Thus, optimizing 𝜁𝑔 while reducing 𝜁𝑎
is recommended.

• Damping 𝜁𝑝 in the primary structure is benficial in enhancing vibration suppression as per Case 3. With a small 𝜁𝑝 injected 
into the classic Den Hartog’s DVA, the EO-AMF peak height associated with the resulting DVA in (c) can be further reduced as 
compared with that associated with the DVAs based on structural modfications, e.g., Fig. 1(d) and (e). Furthermore, damping 
𝜁𝑝 can take effect jointly with 𝜁𝑔 to further lower the EO-AMF peak height. Hence, letting 𝜁𝑝 = 0 as in Fig. 1(b), (d), and (e) can 
lead to conservative results for both vibration suppression and DVA optimization.

We stress that the results reached above can apply to a large range of DVA variants with various structural modfications or 
component arrangements as long as such operations are equivalent to the tuning of 

(
𝑚̄𝑎, 𝑐𝑎, 𝑘̄𝑎, 𝑐𝑔, 𝑐𝑝

)
, exemplfied by Eq. (49) for 

tuning 𝑚̄𝑎 via the link length 
(
𝑙1, 𝑙2

)
. Similarly, the resultant-based procedure in Fig. 2, with high efficiency and non-conservativeness, 

can be generalized to various polynomial-equations-based optimization problems including the MDOF DVAs in [38--40]. The authors 
believe that this work enriches the state-of-the-art knowledge of the 𝐻∞ optimization problem and provides a benchmark theory for 
exact optimization. Issues mentioned in Section 7 and optimization combined with modal analysis as in [8--10] will be our next stage 
of work.
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Appendix A. A simple comparison between Dixon and Sylvester matrix

Following [56], we consider two polynomial equations parameterized in 𝜆 with 𝑑1 = 𝑑𝑒𝑔
[
𝑝1 (𝜆) , 𝜆

]
= 1 and 𝑑2 =𝑑𝑒𝑔

[
𝑝2 (𝜆) , 𝜆

]
= 2

so that 𝑑max = max
{
𝑑1, 𝑑2

}
= 2,{

𝑝1 (𝜆) = 𝛼0 + 𝛼1𝜆,
𝑝2 (𝜆) = 𝛽0 + 𝛽1𝜆+ 𝛽2𝜆2.

(52)

Then, the Dixon polynomial is constructed following (28) as
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𝛿 (𝜆,℘) = 1 
𝜆−℘

||||| 𝛼0 + 𝛼1𝜆 𝛽0 + 𝛽1𝜆+ 𝛽2𝜆2
𝛼0 + 𝛼1℘ 𝛽0 + 𝛽1℘+ 𝛽2℘2

||||| = (−𝛼1𝛽2𝜆− 𝛼0𝛽2)℘+
(
−𝛼0𝛽2𝜆− 𝛼0𝛽1 + 𝛼1𝛽0

)
. (53)

Note that 𝑑𝑒𝑔
[
𝛿 (𝜆,℘) ,℘

]
= 𝑑max − 1 and each common solution 𝜆 of Eq. (52) is a zero of 𝛿 (𝜆,℘) = 0 regardless of ℘. Hence, all the 

coefficients of ℘ should vanish at each common solution of Eq. (52), leading to the Dixon matrix

𝐃 =
[

−𝛼0𝛽2 −𝛼1𝛽2
−𝛼0𝛽1 + 𝛼1𝛽0 −𝛼0𝛽2

]
(54)

which is independent of 𝜆 and has the dimension of 𝑑max × 𝑑max. The existence of any common solution of Eq. (52) requires

|𝐃| = 𝛼20𝛽2 − 𝛼0𝛼1𝛽1 + 𝛼21𝛽0 = 0, (55)

the so-called Dixon resultant equation. As for the Sylvester matrix [51,52] of Eq. (52), it is constructed as

𝐒 =
⎡⎢⎢⎣
𝛼1 𝛼0 0
0 𝛼1 𝛼0
𝛽2 𝛽1 𝛽0

⎤⎥⎥⎦ , (56)

a matrix in the dimension of 
(
𝑑1 + 𝑑2

)
×
(
𝑑1 + 𝑑2

)
. Similarly, the Sylvester matrix 𝐒 needs to be singular for the existence of any 

common solution of Eq. (52), yielding the Sylvester resultant equation

|𝐒| = 𝛼20𝛽2 − 𝛼0𝛼1𝛽1 + 𝛼21𝛽0 = 0, (57)

which is identical to (55). Clearly, the Dixon matrix (54) has a smaller dimension than that of the Sylvester matrix (56), and therefore 
the saved computational costs by applying the Dixon resultant can be substantial when any one of the two degrees 𝑑1 and 𝑑2 is large, 
as demonstrated in Section 6.1.

Data availability

Data will be made available on request.
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