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Shuowei An ,1 Tuo Liu ,2,3,* Jie Zhu ,4,† and Li Cheng 1,‡

1Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
2Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

3State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
4Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

(Received 8 July 2024; revised 3 December 2024; accepted 3 January 2025; published 16 January 2025)

Complex-frequency calculation enables the characterization of open wave systems in the complex frequency
plane as well as the evaluation of wave behaviors under virtual gain and/or loss, which has widespread
applications in the investigations of wave scattering and non-Hermitian physics. The corresponding calculation
approaches, however, have not been well developed and are usually limited to simple analytical models. Here,
we report an efficient numerical method for calculating complex-frequency acoustic wave fields, in which the
imaginary part of the frequency is equivalently converted into the variation in material parameters. In this way,
the complex-frequency problem becomes a real-frequency one which can then be readily implemented with
most existing numerical solvers of the Helmholtz equation. The proposed method is validated by considering
two representative examples: the scattering of a one-port lossy acoustic resonator and the imaging of a lossy
acoustic superlens under complex frequency excitation. Our work provides a practical and general solution for
complex-frequency calculation, in principle, applicable to any complex, dispersive wave systems, which could
serve as a powerful tool for fundamental and applied research related to wave scattering and non-Hermiticity.
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Introduction. The eigenvalues of a system’s scattering
matrix, together with their evolution within the complex fre-
quency plane, provide rich information about the scattering
behaviors, in which scattering singularities, known as poles
and zeros corresponding to entirely divergent (purely outgo-
ing) and vanished (purely incoming) wave states, can fully
describe the resonant and scattering properties of the system.
Complex frequency plane analysis of the scattering matrix has
thus been commonly considered as an efficient approach to
the exploration of various anomalous phenomena and effects
associated with wave scattering or open systems, including
but not limited to bound states in the continuum (BICs),
exceptional points (EPs), superscattering, coherent perfect ab-
sorption (CPA), and CPA-Lasing, etc. [1–8]. For example,
the merging and disappearance of a zero and a pole in an
open Hermitian system suggests the emergence of a BIC
upon continuous parameter tuning [1]; the coalescence of
zeros (or poles) under non-Hermitian modulation signifies a
scattering (or resonant) EP [9–11]. The design and optimiza-
tion of wave-absorbing materials or structures are another
typical scenario in which the complex frequency plane anal-
ysis of scattering zeros shows ever-growing importance in
recent years [4,6,12,13]. However, explicit expression of a
scattering matrix is usually necessary to create its complex
frequency plane due to the lack of numerical solvers support-
ing complex-frequency calculation. This remains challenging
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for the study of more sophisticated or realistic systems with
irregular geometries, complex dispersion and boundary con-
ditions, and gain-loss modulation.

Another emerging direction involving complex frequency
calculation and analysis is the intriguing system response or
wave propagation behavior at complex frequencies with the
imaginary frequency playing the role of virtual loss or gain
[14–18] to the system. The idea has attracted great attention
across a wide variety of fields and has been the key ingredient
to demonstrate virtual parity-time (PT) symmetry [19], criti-
cal coupling and CPA [20–24] as well as the overcoming of
intrinsic losses in the non-Hermitian skin effect [17], super-
lensing [14,15,25], sensing [18], and plasmonic [16] systems.
The practical realization of complex-frequency excitation usu-
ally relies on either truncated temporally decaying/growing
sinusoidal signal [14,17] or the synthesized multifrequency
steady-state wave of its Fourier transform [15,16]. So do the
corresponding numerical calculations and analyses, though
simplified analytical models may be derived as an alternative
approach. Those approximate treatments regarding complex
frequency wave suffer from inevitable information loss,
high computational costs, insufficient modeling, and cumber-
some postprocessing, especially when dealing with practical
structures.

Apart from the above two major topics, complex-frequency
calculation can, in principle, serve as a powerful toolbox for
the investigation of wave physics related to non-Hermiticity
that induces complex-valued, nonorthogonal eigenstates
[2,26] and various PT-symmetric [27,28] or topological phase
transitions [2,29–31]. In this letter, we propose a numer-
ical method compatible with most real-frequency solvers
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of Helmholtz equation for complex-frequency calculation in
acoustics through transforming the imaginary-frequency com-
ponent into equivalent material properties. We examine the
applicability and validity of the proposed method in two
classes of problems: the complex frequency plane analysis
of a one-port resonant scattering system and the complex
frequency wave propagation in a lossy holey-structured meta-
material. We consider well-established models that have been
thoroughly investigated in many previous works, in which
good agreement can be found between the results from our
method and those from analytical solutions or the data in
existing literature. Our proposed method is general and flexi-
ble, appliable to the analysis of any non-Hermitian acoustic
systems, even with complex gain-loss modulations, bound-
ary conditions and dispersion. It could also be extended to
other wave systems or other forms of equations after further
derivation.

Theory. We start with the inhomogeneous Helmholtz
equation that describes linear acoustic waves in fluids in the
frequency domain [32] with harmonic time dependence eiω∗t :

∇ ·
(

− 1

−ρ∗ (∇p − qd )

)
− ω∗2 p

ρ∗c∗2 = Qm. (1)

In Eq. (1), p = p(r, ωr ) is the acoustic pressure field dis-
tribution generally as a function of the position vector r
and real-valued angular frequency ωr ; qd = qd (r, ωr ), and
Qm = Qm(r, ωr ) represents the dipole and monopole domain
sources, respectively; ρ∗ = ρ∗(r, ωr ), c∗ = c∗(r, ωr ), and ω∗
refer to the density, speed of sound, and angular frequency,
respectively, where the superscript “*” means that they can be
complex-valued. Those two material parameters are position-
and frequency-dependent as well, allowing the consideration
of not only spatial variation and frequency dispersion but also
potential dissipative loss (e.g., thermal and viscous losses)
and/or amplifying gain (e.g., electro-thermo-acoustic cou-
pling) effects. They can even be anisotropic if necessary (viz.,
rewritten into tensor forms). The frequency, ω∗ = ωr + iωi, is
also set as complex-valued to cope with the case of complex
frequency excitation (CFE) that corresponds to time-domain
wave with either temporal exponential decay (ωi > 0) or
growth (ωi < 0).

By solving Eq. (1) for the physical model under con-
sideration at a specific value of ω∗ together with necessary
boundary conditions, one can obtain the complex-frequency
response of the entire computational domain. The complex
frequency plane analysis of a scattering system has usually
been done by firstly deriving the explicit theoretical model
and then performing calculation throughout the complex fre-
quency plane [9,33]. But this becomes unfeasible any more
for models without analytical solution, as most finite element
method and boundary element method solvers, albeit capable
of dealing with complicated systems, do not support complex
frequency calculation. Similar issues were encountered for
the study of virtual gain and/or loss, in which the practical
implementation of CFE in both simulation and experiment
relies on truncated yet quasi-steady-state time-domain signal
to mimic the complex frequency signal with original form
eiω∗t = e−ωit eiωr t that is infinitely extended and divergent in
time [14,15,23]. Alternatively, the Fourier series expansion

FIG. 1. Schematic illustration of the proposed method for
complex frequency calculation. The required complex frequency
excitation can be equivalently implemented under real frequency
excitation by converting the imaginary frequency component into
material parameters.

of the truncated signal at a large number of immediate real
frequencies can be combined to synthesize the complex-
frequency signal in the frequency domain [15,16]. While those
numerical methods are directly related to their experimental
realizations, they are often time-consuming and inefficient for
early-stage analysis and mechanism exploration. The infor-
mation loss brought by transient signal truncation and Fourier
spectrum discretization could also reduce the performance of
CFE [15].

Here we address the aforementioned issues in complex fre-
quency calculation by applying a simple mathematical “trick”
to Eq. (1), that is, by converting the imaginary part of fre-
quency, ωi, representing the exponential decay or growth, into
the material parameters in an equivalent manner [34], as illus-
trated in Fig. 1. Specifically, let c∗ = ω∗

ωr
c∗

eq, and substituting
it into Eq. (1) yields

∇ ·
(

− 1

−ρ∗ (∇p − qd )

)
− ωr

2 p

ρ∗c∗
eq

2 = Qm, (2)

in which c∗
eq denotes the equivalent speed of sound that takes

the form

c∗
eq = ωr

ω∗ c∗. (3)

Note that Eq. (2) now only contains harmonic excitation at
a purely real frequency. Equations (1) and (2) are fully equiv-
alent and therefore share the same solution. Such treatment
transforms a system under CFE into an equivalent system
under real-frequency excitation, which can be readily solved
by any real-frequency numerical solvers. It is worth men-
tioning that here we take the Helmholtz equation governing
acoustic waves as a specific example, and similar treatments
may also be applied to other wave systems or equations such
as Maxwell’s and Navier-Stokes equations.

Below, the effectiveness of the proposed method is
validated by two classes of problems involving complex-
frequency calculation, including the complex frequency plane
analysis of a one-port resonant scattering system and the
complex frequency wave propagation in a lossy holey-
structured metamaterial lens. The calculations throughout this
manuscript are performed with the frequency domain solver
built in COMSOL Multiphysics (v6.2), during which the real
frequency, ωr , and equivalent speed of sound, c∗

eq, are utilized
to achieve the required CFE.

Complex frequency plane analysis of a scattering sys-
tem. The eigenvalue poles and zeros of a system’s scattering
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FIG. 2. Complex frequency plane analysis for a one-port acoustic scattering system with thermal and viscous losses. (a) Schematic of the
one-port scattering system consisting of a quarter-wavelength resonant cavity (yellow region) connected to a wide circular tube (gray region).
(b) Reflection coefficients of three cases in the complex frequency plane in logarithmic scales. The results on top panels are obtained from the
proposed method, while the bottoms are from the analytical model. (c) Three selected spectra in case II (marked by the gray dashed lines) for
three different imaginary frequencies. (d) Time-domain simulation of virtual perfect absorption. The location of the complex zero excited in
the simulation is marked by the black arrows in (b) and (c).

matrix fully reflect its scattering properties [1]. Their locations
within the complex frequency plane are usually determined
by performing a frequency sweeping along both its real and
imaginary axes. We consider the one-port acoustic scatter-
ing problem of a lossy quarter-wavelength resonant cavity
[Fig. 2(a)], a typical resonant component widely used in
sound-absorbing structures [35], and perform complex fre-
quency plane analyses using both our proposed method
and the available analytical model [13]. For such one-
port systems, the eigenvalue of the scattering matrix is
its reflection coefficient, and the zeros of scattering ma-
trix coincide with the scattering zeros suggesting perfect
absorption.

The one-port acoustic system consists of a wide circular
tube (cross-sectional radius r1 = 0.025 m) connected with
a resonant cavity (cross-sectional radius r2 < r1 and length
h) [Fig. 2(a)]. The wide tube is lossless and only supports
plane-wave mode in the frequency range of interest. The
inherent dissipative loss induced by the viscous and thermal
acoustic boundary layer effect inside the cavity is described
by the low reduced frequency (LRF) model [36], in which
the frequency-dependent dissipation effect is included in the
effective speed of sound and density of air. Plane-wave ra-
diation condition is applied at the left end to generate a
right-going incident plane wave and to eliminate unwanted
reflection from the boundary of the computational domain,

consistent with the analytical model for reflection coefficient
calculation.

Three cases with different structural parameters are con-
sidered to evaluate the validity of our proposed method
[Figs. 2(b) and 2(c)]. In all three cases, evidently the re-
sults obtained from our proposed method agree perfectly
with those from the analytical model (see detailed formula in
Ref. [37]), no matter in terms of the positions of zeros and
poles [Fig. 2(b)] or the overall refection spectra [Fig. 2(c)].
For longer cavity length h = 0.1 m (Cases I and II), four
pairs of zeros and poles exist within the interested frequency
range, whose real frequencies correspond to the odd integers
of quarter wavelength. As expected, the intrinsic dissipative
loss indeed breaks the time-reversal symmetry and leads to the
asymmetric distribution of poles and zeros about the real axis
[1] (conjugate poles and zeros in the lossless case). This asym-
metry grows with increased dissipative loss owing to stronger
acoustic boundary layer effect in narrower air channels (com-
parison between Cases I and II). For shorter cavity length
h = 0.05 m (Case III), less pairs of zeros and poles can be
found in the same range due to increased quarter-wavelength
resonance frequencies.

Moreover, a time-domain simulation is performed using
the thermoviscous acoustic module based on a full linearized
Navier-Stokes model to further verify the above frequency-
domain results [Fig. 2(d)]. We take the virtual excitation of the
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FIG. 3. Transmission characteristics of the holey-structured metamaterial. (a) Schematic of the holey-structured metamaterial working as
an acoustic superlens. The lower panel indicates the inherent losses induced by the thermal-viscous boundary layer effect inside the air channel.
(b) Transmission coefficients of the lossless (left column) and lossy (middle and right columns) cases within the complex frequency plane.
The inherent losses are considered in both a simple way (general dissipation model, middle column) or a more realistic way (the low reduced
frequency model of thermal-viscous boundary layer effect [36], right column). The top panels are results obtained from our proposed method,
while the bottom ones are from the analytical model. The contour lines of the unitary transmission are marked by the black dashed lines.

first zero located at 824−11.6i Hz [black arrows in Figs. 2(b)
and 2(c)] in Case II as an example and examine the perfect
absorption behavior (|r| = 1). By injecting a temporal signal
at this complex frequency, p(t ) = cos(ωrt )eωit , the incident
wave to the cavity is almost totally absorbed as evidenced
by the vanishing reflected signal [bottom panel of Fig. 2(d)].
In contrast, considerable wave reflects back under harmonic
excitation at the real frequency with incident signal p(t ) =
cos(ωrt ) [upper panel of Fig. 2(d)].

Complex frequency wave propagation in a lossy acoustic
metamaterial lens. Recent studies have shown that CFE with
temporal exponential decay can supply virtual gain for super-
lensing systems to overcome their intrinsic dissipative losses
that fundamentally limit the super-resolution effect [14,15].
Here we adopt the holey-structured acoustic metamaterial in
Refs. [14] and [38] to test the effectiveness of our proposed
method in evaluating the response of the acoustic superlens
under CFE.

The acoustic superlens, a holey-structured metamaterial,
consists of 15 × 15 square through holes arranged period-
ically within the transverse plane, in which the periodicity,
side length, and width are denoted by l1, l2, and h, respec-
tively [Fig. 3(a)]. We set l1 = 0.02 m, l2 = 0.015 m, and
h = 0.1 m, in consistent with Ref. [14]. An analytical model
has been derived to evaluate the transmission coefficient of
the holey-structured metamaterial [37]. Meanwhile, for di-
rect comparison, we consider the general dissipation model
(named “simple lossy”) adopted by Ref. [14] to describe
the inherent dissipative loss, that is, by utilizing a complex
speed of sound cc = c

√
1 + iωδ/c2 and a complex density

ρc = ρc2/c2
c , where δ denotes the sound diffusivity and is set

as 0.4 m2/s in the simulation. To demonstrate the versatility
of our proposed method, we also provide the results for the
LRF model [36] (named “thermal-viscous”) that characterizes
the dispersion and dissipation of thermal-viscous effect more
realistically.

The calculated transmission coefficients of the metamate-
rial within the complex frequency plane for normal incidence
are given in Fig. 3(b). Again, we compare the results obtained
from our proposed method [top panels in Fig. 3(b)] with
those from the analytical model [lower panels in Fig. 3(b)],
which shows excellent agreement for all lossless and lossy
cases. As discussed in previous works [14,38], the contour
line (black dashed line) of unitary transmission (|t | = 1) can
touch the real axis around the Fabry-Perot (FP) resonance in
the lossless case [leftmost panels of Fig. 3(b)], while it cannot
in the lossy case [right two columns of panels of Fig. 3(b)],
which suggests attenuated evanescent waves and weakened
subwavelength imaging effect due to dissipative loss under
real frequency excitation (RFE). This fundamental limit can
be overcome by employing CFE to compensate the loss and
recover the super resolution.

We further examine the recovered resolution of the super-
lens under CFE by considering an object to be imaged similar
to that in Ref. [14] [upper panel of Fig. 4(a)]. The object (im-
age) plane is 0.5 mm away from the input (output) surfaces of
the superlens, sufficiently close to the metamaterial so that the
near-field evanescent waves can be tunneled (collected). In the
lossless case, a nearly perfect image with deep subwavelength
resolution can be obtained at the FP resonance [38] [bottom
panel of Fig. 4(a)]. But with the dissipative losses coming into
play, the image is blurred for RFE as a result of the attenua-
tion of evanescent wave carrying rich high spatial frequency
information [leftmost panels of Fig. 4(b) and 4(c)]. Under
CFE, the image quality gradually approaches that of the ideal
lossless case as the imaginary part of the excitation frequency
increases until the intrinsic losses are exactly compensated
at 1705 + 30i Hz for the simple lossy model [Fig. 4(b)] and
at 1614 + 83i Hz for the thermal-viscous model [Figs. 4(c)
and 4(d)]. The latter has been regarded as a more realistic
description of the inherent thermal-viscous losses, in which a
red shift of FP resonance appears due to the reduced effective
speed of sound from dispersion [36,39,40].
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FIG. 4. Imaging of a lossy acoustic superlens under complex frequency excitation. (a) The object to be imaged (top) and the image of
the lossless case under real frequency excitation (bottom). [(b),(c)] The images obtained through the proposed method at different complex
frequencies. Two lossy models, the simple lossy model (b) and thermal-viscous model (c), are considered. (d) Image cut of normalized sound
intensity at the gray dashed line marked in (a) for the thermal-viscous model, in which the gray (blue) solid line is for the ideal lossless (lossy)
case.

As compared to the time-domain method adopted in
Refs. [14,23] and the multifrequency synthetization method
adopted in Refs. [15,16] for complex frequency calculation
(though they are important experimental methods), our pro-
posed method shows advantages in computational efficiency,
capability of dealing with complex dispersion and loss, and
conciseness of post data processing (see detailed comparison
and discussions in [37]). Most importantly, since our proposed
method is basically free of the information loss during tran-
sient signal truncation, establishment of quasisteady state, or
discretization of Fourier spectrum (at least one of which is
necessary for the other two methods), it actually represents
the most accurate complex frequency response of the sys-
tem that the other two methods can only approach but never
exceed.

Discussion and conclusion. To conclude, we have pro-
posed a numerical method to conduct complex-frequency
calculation for acoustic systems, in which the required com-
plex frequency is equivalently transformed into complex
material parameters so that the calculation can be per-
formed by real-frequency solvers. Two typical classes of
problems, including the complex frequency plane analysis
of a one-port scattering system and the complex frequency
wave propagation in a lossy acoustic metamaterial lens,
have been considered with a detailed comparison with
the results from the analytical models. The results well
confirm the effectiveness and flexibility of our proposed
method. In light of the fact that our proposed method in
essence converts the imaginary frequency component into an
additional variation in material parameters, it is in principle

applicable to any linear, time-invariant acoustic systems
provided that the associated computation for the complex
material parameters is allowed in the numerical solver that we
adopt, even in some extreme situations (e.g., irregular cavities
and invisible poles [41]), as discussed in the Supplemental
Material [37] (see also Refs. [42–46] therein). Our work there-
fore provides an elegant solution to the characterization and
evaluation of open scattering and, in general, non-Hermitian
systems involving complex frequency calculation, which can
also be further extended to other wave systems or other forms
of equations like Maxwell’s equation and Navier-Stokes
equation.
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