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NOMENCLATURE 

 

PBF = Powder bed fusion 

LASSO = Least Absolute Shrinkage and Selection Operator 

 

 

1. Introduction  

 

Powder Bed Fusion (PBF) is a 3D printing process in which 

powdered metal is fused together through the use of a laser to produce 

an object. The physics of this process are well understood but complex 

and thus the physical properties of a printed part can vary greatly under 

different production conditions. Observations of the molten pool and 

the fusion of the powder can be difficult to capture due to interference 

from the laser and the relatively small area over which the melt pool 

forms. Thus, it was decided to observe secondary effects of the PBF 

process in an attempt to determine the physical properties of the fused 

powder. The primary target of observation is the particles of melted, 

partially melted, and unmelted powder that are ejected from the bed as 

the laser moves across it. 

These ejected particles display a variety of observable traits 

including the number of each type of particle, the velocity they move 

at, the angle they are ejected at, and their temperature. These traits vary 

depending on the scan speed and the power of the laser and can be used 

as additional data to help determine the final properties of the print. A 

highspeed camera and laser illumination system were set up to capture 

video of the laser moving along the powder bed. The video is then 

analyzed to find the particle traits, a frame of this video is shown in 

Figure 1 below. Quantifying the particle traits in these observations has 

proven to be difficult to do by hand as there can be a large number of 

particles in a single frame. In order to increase the accuracy of the 

particle counting and the consistency with which the observed traits are 

analyzed, a computer program is implemented. This program uses a 

form of machine vision to find, classify, and analyze the particles and 

is the subject of this paper.  

Fig 1. Frame from high-speed video 

The image treatment program is built using Python and primarily 
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The Powder Bed Fusion (PBF) 3D printing method introduces porosity into the final structure of the printed part. It is 

necessary to be able to predict the percentage porosity when different percentages may be acceptable or desired. To do this, 

an image treatment method using high-speed imaging was developed to obtain feature values as the part is constructed. This 

method breaks down the image such that only the prominent features, mainly the spatter, are visible. Noise is then removed 

from the image and the feature values are isolated and quantified. The program can output a variety of feature values including 

spatter and particle count, and ejection angle. Some feature values are summed, such as the spatter and particle counts, and 

some are averaged such as the ejection angle. These feature values are then used to predict the porosity via a least absolute 

shrinkage and selection operator (LASSO) model. Image treatment of the highspeed video has proven successful and the noise 

is able to be managed such that a useful number of particles can be analyzed. 
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relies on Numpy and OpenCV to perform the computer vision tasks.  

 

2. Methods 

 

2.1 Particle Isolation 

The first part of the machine vision process is to separate the 

particles from the background of the image. This is accomplished by 

making two comparisons. The first frame of the video when no 

particles are present is used as a clean plate to compare the remaining 

frames too; this is shown in Figure 2a.  

Fig 2a. Comparison of current and first frame 

 

Due to noise in the background and the particles being filmed 

against the powder bed and not a clean background, the accuracy of 

only using a clean plate decreases as the video progresses. Thus, the 

clean plate method is supplemented by also comparing the current 

frame with the previous frame. This comparison yields a frame with 

less noise, but it doubles the number of particles due to how OpenCV 

handles the comparison as shown in Figure 2b. To fix this, the clean 

plate comparison is combined with the previous frame comparison to 

yield a frame with less noise and no doubling of the particles. The final 

result of this isolation is shown in Figure 3. 

Fig 2b. Comparison of current and previous frame 

 

2.2 Large Particle Counting 

Once a frame containing only particles is found it can begin to be 

analyzed. This is first done by having the program look for contours 

which are found by comparing the particle colors. For the black and 

white images coming from the comparisons, finding contours looks for 

where the pixel changes from white (a particle) to black and defines 

that as a possible contour. The issue that occurs with this method is that 

large particles tend to overlap with other particles and an accurate 

quantification and analysis cannot be done. 

Fig 3. Isolated particles and noise 

 

To fix this, a method for iteratively shrinking the large particles was 

developed. This is called disintegration and it involves reducing the 

size of all particles in the frame until the iteration limit is reached or all 

particles disappear from the frame. The method begins with the frame 

resulting from the comparison, shown in Figure 3. The contours from 

this frame are stored for comparison later. The frame is then 

disintegrated by one iteration reducing the size of all particles in the 

frame by roughly one pixel around their circumference as shown in 

Figure 4. The blue boxes are the original bounding contours of the 

particles, and the dotted lines represent the original shape of the 

particles.  

Fig 4. Diagram of Disintegration Process 

 

The contours for this frame are then collected and a check is done 

to see if they lie within the original contours. If they do, then the 

original is updated to the new contour. This process then iterates. After 

enough iterations are performed, the particles shown as solid white 

areas are identified as separate particles and the orange bounding 

contours are set to save their positions. The goal is to see if a single 

large contour breaks into smaller contours as the particles are 

disintegrated. Once the iteration finishes the final list of contours is 

multiplied by the respective iteration number to return them to their 

original size. The result is that the overlapping particles are able to be 

counted individually. 

 

2.3 Data Extraction 

With the contours of the particles successfully found, the data 

a 

b 
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collection can begin. The first piece of data to collect is the size of each 

of the particles which is considered to be the size of the bounding box 

that surrounds the particle, the contour. This ejection angle of the 

particles is also found. The center of each particle is found and then 

these coordinates are averaged in order to produce the ejection angle. 

The final contours can also be used as a mask with which to recover 

only the particles from the original image. Here the color of the 

particles can be analyzed in order to give a relative temperature or to 

further distinguish between types of particles. A final frame with 

various data is shown in Figure 5. Once the desired data has been 

collected it is exported for use in the subsequent LASSO analysis. 

Fig 5. Final image. Particle bounds and other information displayed 

over the original frame 

 

3. Conclusions  

 

3.1 Current Version 

This computer vision method is able to find and classify particles 

with greater accuracy than the previous method. The noise in the 

individual frames was able to be reduced and more particles were 

found closer to the laser melt pool. This proved difficult before as the 

melt pool would leave a long trail in the comparison images that would 

make finding particles difficult. The data extracted from the program 

is able to be used with little formatting in a LASSO program to 

determine material properties. Examples of the type of data exported 

from the program are shown in Figures 6a and 6b.  

Fig 6a. The number of particles and spatter in each frame 

 

 

 

Fig 6b. The ejection angle of all particles in each frame 

 

The clarity of the final particle clean plate allows for a good range 

of parameters to be found, including count, velocity, and color. From 

here it is possible to include other functionality in the code. Different 

methods for detecting and classifying the particles are possible, from 

the original rectangular sample region method to a radial method. Both 

can use the same image treatment process to achieve a clear view of 

the particles. 

 

3.2 Future Work 

This computer vision method is continuing to be improved as 

issues of dust and smoke have added additional noise that confuses the 

program into finding more particles than really exist. Further 

improvements to noise reduction in the area of the melt pool will help 

to find particles as they are created and further improve accuracy. 

Similarly, a reduction in the noise generated by the weld-line will help 

to remove possible misses. 
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