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NOMENCLATURE 

 

CNN = convolutional neural network 

PSF = point spread function 

RDNN = residual deconvolutional neural network 

HR = high-resolution 

LR = low-resolution 

 

1. Introduction  

 

Super-resolution [1] is a technique that enhances image quality by 

reconstructing high-resolution details from low-resolution input. 

Approaches like deconvolution-based [2] super-resolution and 

convolutional neural networks [3] are employed to intelligently upscale 

images, revealing finer features and enabling better visual 

interpretation. Super-resolution has far-reaching implications for 

industries requiring precise image analysis and is pivotal in advancing 

our ability to extract information from images with greater accuracy 

and fidelity. 

 

1.1. Convolutional neural networks based on super-resolution 

Convolutional Neural Networks (CNNs) have emerged as a 

contemporary technique for enhancing image resolution through the 

use of deep learning [4,5]. In CNN-based super-resolution, the network 

is trained on pairs of high-resolution (HR) and low-resolution (LR) 

images. These models generally come with numerous parameters, 

enabling them to capture intricate nonlinear relationships within the 

data. However, this approach is not without drawbacks. One limitation 

is its dependency on training data [6]. A scarcity of datasets could 

heighten the risk of model overfitting. Additionally, the complex 

architecture of CNNs may make it difficult to interpret the rationale 

behind the weight adjustments during the super-resolution process. 

 

1.2. Deconvolution-based super-resolution 

The central concept of deconvolution-based super-resolution 

hinges on formulating the Point Spread Function (PSF) [7] as a 

theoretical model [8] and then inverting it to approximate the original 

image as closely as possible. A precise PSF model allows for the 

accurate restoration of high-frequency details. However, the challenge 

lies in accurately modeling the degradation process for real-world 

situations with complex degradations. Such inaccuracies can result in 

artifacts like ringing [9]. 

To address this issue, blind deconvolution methods estimate the 

PSF by analyzing the blurred input image [10]. However, this approach 

has limitations. For instance, unpredictable factors like dark currents 

introduce noise, which is not accounted for in the ideal model. Since 

the deconvolution process is susceptible to high-frequency noise, this 

can result in amplified noise in the restored image. 

 

2.Methodology 

2.1. PSF modeling 

To begin the deconvolution process, it is essential to obtain the PSF 

of the optical system. Although PSFs can be captured by measuring a 
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point-like sample, these measurements often suffer from noise or 

misalignment. To mitigate these effects, we parameterize and fit the 

measured PSFs. According to Fourier optics [8], the Fourier transform 

of a PSF with a circular pupil can be assumed circular (see Eq. 1). 

 

𝐻(𝑓𝑥 , 𝑓𝑦) =  ℱ(ℎ(𝑥, 𝑦)) 
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Eq. 1 

 

According to the Hankel transform, the Fourier transfer of the 

circular function is the Jinc function [11] (Eq. 2). 

 

ℎ(𝑢, 𝑣) = ||ω2𝑗𝑖𝑛𝑐(𝜔𝜌)||2 Eq. 2 

𝜔 =
𝑤

𝜆𝑧
    Eq. 3 

In Eq. 3, 𝑤 is the pupil diameter, 𝑧 is the focus length, and λ is 

the wavelength. For the aberration, five coefficients are applied from 

the Seidel coefficients (𝑊 ), which represent spherical aberration, 

coma, astigmatism, curvature of field, and distortion (eq. 4). 
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eq. 4 

 

In eq. 4, 𝑢̂0, 𝑥̂, 𝑦̂  are the normalized image height and the exit 

pupil surface coordinates, respectively. In addition, bias (DC), linear 

gains (AC), and nonlinear gains (γ) are also considered to increase the 

flexibility of the model. According to the convolution theorem, the 

factors mentioned above can be incorporated into the parameterized 

PSF model, shown in eq. 5. 

𝑝𝑠𝑓(𝑢, 𝑣) = (𝐷𝐶 + 𝐴𝐶 ‖𝜔(𝜆)2𝑗𝑖𝑛𝑐(𝜔𝜌)

∗ ℱ{𝑠𝑒𝑗𝑘𝑊(𝜆𝑧𝑓𝑥,𝜆𝑧𝑓𝑦) }‖
2
)
𝛾

 

eq. 5 

Earlier models [12] only considered the central wavelength to 

simplify the calculations. However, a realistic light source 

encompasses a range of wavelengths. We focus on the wavelength 

range from 400 nm to 700 nm for more accurate PSF modeling. 

Weights are then assigned to individual wavelengths based on the 

intensity spectrum, (𝐼(𝜆)), provided in the light source specifications. 

The previous model only considers the central wavelength to 

simplify the model. However, the light source spectrum isn't confined 

to a single wavelength. For precise PSF modeling, the wavelength 

range from 400 nm to 700 nm is chosen as the region of interest. 

Subsequently, weights are assigned to individual wavelengths, guided 

by the intensity spectrum provided in the light source specifications. 
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eq. 6 

In terms of optimization, the Mean Square Error (MSE) [13] is 

applied as the objective function and utilized by the BADS algorithm 

[14] for optimization. Once the optimized PSFs are obtained, the 

deconvolution process can be carried out within the RDNN framework. 

2.2. Residual deconvolutional neural network 

We introduce the Residual Deconvolutional Neural Network 

(RDNN), which synergizes CNN-based and deconvolution-based 

super-resolution techniques. The RDNN initiates with a deconvolution 

block where both Point Spread Functions (PSFs) and the input image 

are processed using Wiener-based deconvolution [15]. This is followed 

by several residual blocks to augment feature extraction capabilities. 

Finally, three convolution layers act as a decoder to fine-tune detail 

generation. For loss optimization, we employ the Huber loss 

function[16], ideal for handling noisy or outlier data, offering a 

compromise between the sensitivity of Mean Square Error (MSE) and 

the robustness of Mean Absolute Error (MAE). 

In training, our dataset is a hybrid of CAD and deconvolution 

datasets. The CAD dataset offers high-resolution (HR) synthetic 

images that are blurred to generate low-resolution (LR) counterparts 

using PSFs. Conversely, the deconvolution dataset uses microscope-

acquired images as LR data, with HR versions created through Wiener-

based deconvolution. This diversified dataset enriches the model's 

capacity for reconstructing intricate details. 

 

 

Fig. 1  Architecture of the proposed RDNN.  

 

 

3. Experimental results and analyses 

3.1. System setup for experiments 

Table 1 lists the components of the optical system for the 

experiment. Fig. 2 is the image of the darkfield microscope [17]. 

 

Table 1  the components used in the optical system. 

light source Olympus BX3M-PSLED 

illumination module Olympus BXSM-RLA-DF 

reflective illumination Olympus BX3M-LEDR 

50x 

dark field objective lens 

Olympus MPLFLN-BD-50x, 

N.A.0.8 

1x tube lens Olympus U-TLU 

CCD iDS U3-3890CP Rev.2.2 
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Fig. 2 The image of the darkfield microscope (left), and the schematic 

of the darkfield microscope (right).  

 

3.2. Methodology of the PSF calibration 

The PSFs of the system are obtained through two approaches: 

measurement and fitting. For the measured PSF, the micro points on 

the sample are chosen as the reference. The points are small enough to 

be a point for the experimental system. The darkfield image of the 

crack is acquired, and the neighbor 81x81 region is taken as the 

measured PSF. Previous research utilized rough surfaces to acquire 

multiple spots within a single image to construct a PSF library. 

However, this approach may introduce potential measurement 

uncertainties in PSF calibration, resulting in unevenly distributed 

points across the field of view. To avoid this, by methodically shifting 

this spot across the focal plane, we capture 225 PSFs within the 

paraxial region of the darkfield microscope's field of view (see Fig. 3). 

 

 

Fig. 3 Schematic for the PSF calibration approach: each time the 

spot is shifted to a predetermined location, a corresponding PSF is 

then captured, and the process is repeated until a dataset consisting 

of 225 PSFs is compiled. 

 

When parameterizing PSFs, we employ a model based on the Jinc 

function to fit all measured PSFs. Fig. 4 displays a side-by-side 

comparison of one such measured PSF and its parameterized fitting 

result. High-order oscillations, or sidelobes, disappear due to low 

signal-to-noise ratios during image acquisition. However, the fitting 

process reconstructs these sidelobes, reducing the likelihood of ringing 

artifacts during deconvolution. 

 

  

Fig. 4 One of the measured PSF (left) and the corresponding 

parameterized PSF(right). 

 

3.3. Experimental results and analyses 

 

3.3.1. Experiment with semiconductor micropatterns 

Fig. 5 demonstrates the effectiveness of our proposed RDNN 

method. We use three types of semiconductor micropatterns: a grating, 

a square block, and a cylinder, all composed of 100 nm height of SiO2 

on a Si base. Darkfield images are captured with a microscope at 50x 

magnification and a numerical aperture of 0.8. Both measured and 

parameterized PSFs are employed in the Wiener deconvolution 

process. A library search is conducted to find the most suitable PSFs. 

Compared to the Wiener method, RDNN visibly suppresses the ringing 

effect while maintaining image sharpness. 

Raw image 
RDNN 

(proposed method) 
Deconvolution 

   

   

   

Fig. 5  Comparison between the RDNN and the deconvolution, in 

which three kinds of structures are shown as grating (top), square block 

(middle), and cylinder (down). 

 

3.3.2.  Experiment with semiconductor micrograting 

A micrograting pattern with a nominal linewidth of 500 nm is 

utilized to validate the optical system's resolution capabilities. The 

results generated through deconvolution and RDNN methods are 

depicted in Figure 6, while Figure 7 profiles the contrast of each 

reconstructed image for comparison. The micrograting structure 
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becomes more discernible in the deconvolution result than in the raw 

image, as shown by the yellow line, and even more so in the RDNN 

output, indicated by the red line. Due to poor signal-to-noise ratios in 

the raw images, pitch measurement is unfeasible. However, the 

RDNN-based pitch measurement yields a value of 501.8 ± 34.5 nm, 

while the deconvolution-based pitch stands at 499.5 ± 47.2 nm. The 

bias in both methods is less than the digital resolution of 37 nm, with 

the RDNN's standard deviation even more minor. These results 

substantiate that the RDNN can more precisely resolve HR structures 

on a 500 nm lateral-resolution scale than the traditional deconvolution. 

(a) raw image 
(b) RDNN 

(proposed method) 
(c) Deconvolution 

   

Fig. 6  Reconstructed grating images: (a) raw image acquired from 

the darkfield microscope, (b) reconstructed image by the proposed 

RDNN, (c) reconstructed image by the Wiener deconvolution. 

 

 

 

Fig. 7  Image contrast comparison between the raw and different 

reconstructed images.  

 

4. Conclusions 

    The Residual Deconvolutional Neural Network (RDNN), a hybrid 

approach is developed to enhance the optical lateral resolution that 

integrates Convolutional Neural Networks (CNNs) with optical 

deconvolution techniques based on Fourier optics. The RDNN 

enhances image interpretability by incorporating Point Spread 

Functions (PSFs), acquired via a darkfield microscope. An optical 

model is employed to fit these PSFs, effectively reducing ringing 

artifacts. Our findings underscore RDNN'ssuperiority over traditional 

deconvolution in improving image resolution, particularly in 

challenging signal-to-noise scenarios. From the initial experimental 

test results, it is verified that the bias of the linewidth measurement of 

a semiconductor micrograting pattern is less than 50 nanometers, The 

method holds significant promise for achieving high-quality image 

super-resolution. 
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