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NOMENCLATURE 

𝑚1, 𝑚2, 𝑚3 = signal of the probes 𝑃1, 𝑃2, and 𝑃3. 

𝑑 = the spacing between 𝑃1 and 𝑃2 

𝐿 = the length of measurement section 

𝑓(𝜃) = the workpiece profile 

𝑔(𝜃) = the slide error motion  

𝜃 = the equivalent angular position of the probe 𝑃1 

𝑚(𝜃) = the weighted function 

𝐹(𝑠) , 𝐺(𝑠) , and 𝑀(𝑠)  = the Laplace transform of 𝑓(𝜃) , 

𝑔(𝜃), and 𝑚(𝜃) 

𝑘 = the number of order  

𝐹(𝑗𝑘) , 𝐺(𝑗𝑘) , and 𝑀(𝑗𝑘)  = Fourier transform of 𝑓(𝜃) , 

𝑔(𝜃), and 𝑚(𝜃) 

𝑇(𝑗𝑘) = the transfer function from 𝑀(𝑗𝑘) to 𝐹(𝑗𝑘). 

𝑈ℎ(𝑘) = the harmonic uncertainty 

𝑈𝐻(𝑘) = the overall harmonic uncertainty 

 
 Corresponding author. Tel.: 0086 (020) 87114578; Fax: 

0086 (020) 87112503 

𝑈 = the spatial measurement uncertainty 

 

1. Introduction 

There is an increasing need for optical lenses with high imaging 

performance and long lifespans [1,2]. However, when machining 

optical lenses on brittle materials, unstable cutting depths may produce 

brittle fractures, thus, generating a thick subsurface damage layer, and 

deteriorating the service life and focusing capability [3-5].  

In general, unstable cutting depths may arise from the error motion 

of the linear slide and the rotary spindle of the grinding machine used 

[6, 7]. Hence it can be expected that compensating for the slide error 

motion can reduce the profile error and subsurface damage layer to a 

certain extent [8]. To achieve this aim, the first step is to precisely 

evaluate the slide error motion.  

For efficiency issues, on-machine measurement has become one of 
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The Fourier three-sensor (F3S) straightness measurement is a promising on-machine measurement of the slide error motion by 

eliminating the influence of the workpiece profile. However, in the F3S measurement, the probe spacing deviation deteriorates the 

measurement accuracy significantly. Up to now, it still lacks an effective method to reduce the influence of spacing uncertainty in the F3S 

measurement. Thus, a novel method will be proposed to improve measurement accuracy in this paper. To get this target, first, the algorithm 

of the F3S method based on the Laplace transform was reviewed. Then, we theoretically analyzed the adverse impact of the probe spacing 

deviation. Next, to quantify the influence of the spacing uncertainty, we algebraically derived the spacing uncertainty propagation law 

based on the partial differential in the S domain. Subsequently, to reduce the measurement uncertainty, a solution of spacing optimization 

is presented based on the uncertainty propagation law. Finally, to validate the effect of the spacing optimization, Monte Carlo simulations 

were performed. The results show that the derived uncertainty agrees well with the statistical uncertainty with an error of 0.6 μm (6%). 

Moreover, the F3S measurement can achieve the smallest uncertainty by the spacing optimization based on the derived uncertainty. 
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the most popular methods to assess slide error motion. Commonly, in 

the on-machine measurement of slide error motion, a probe is mounted 

on the slide, then reads runout signals of a reference workpiece. The 

runout signals are always regarded as the slide error motion by 

neglecting the workpiece profile error. However, the workpiece profile 

error can be superposed into the probe signal when the workpiece 

profile is at the same level as the slide error motion, which is the main 

source of the measurement error.  

To tackle this issue, straightness error separation techniques, which 

can simultaneously assess the two quantities, have been investigated 

since the 1970s [10, 11]. In the 1980s, Tanaka [12] developed the 

sequential two-point (S-2P) method, which utilized two sensors/probes 

mounted in a row that moved together to measure at two positions with 

an interval of spacing between the two probes. The slide error motion 

and workpiece straightness were then computed by an iterative 

accumulation of the differential output. Then, Tanaka [13] also pointed 

out that the yaw angle of the slide was involved in the probe signal, and 

to simultaneously compute the three quantities, he employed a third 

probe to the S-2P method, which was called the sequential three-point 

(S-3P) method. However, the probe spacing cannot be smaller than 

their sizes as they interfere, the lateral resolution of the measurement is 

limited in these two methods. Thus, the high-frequency components of 

the profile cannot be evaluated. 

To enhance the lateral resolution, Li [14] applied two capacitive 

displacement probes to dynamically collect the runout signal and 

separate the workpiece profile and slide error motion using the Discrete 

Fourier transform (DFT), which was the Fourier two-sensor (F2S) 

method. However, he also stated that an unexpected deviation can 

occur in the estimation if the workpiece profile periodically occurs with 

a period of the distance between the two probes.  

To overcome the non-periodic issue, Fung [15] applied a third 

probe to the F2S method to rectify the probe signal. This method is 

called the Fourier 3-sensor (F3S) method and was later verified as 

applicable [16]. 

However, the F3S measurement faces three main challenges: the 

height difference between the second and third probes, the probe 

stochastic noise (probe uncertainty) [16], and the probe spacing 

uncertainty, each of which can significantly affect the measurement 

precision. In our previous paper [16], we proposed a solution to 

estimate and compensate for the height difference and used the criteria 

of the determinant of transfer matrix |𝑊(𝑘)| to measure the harmonic 

uncertainty caused by probe noise. Based on this, a hybrid F3S method 

was developed to alleviate the stochastic uncertainty by performing 

several F3S measurements under different probe spacings and selecting 

the optimal Fourier coefficients of the straightness profile individually 

from the several candidate F3S measurements in accordance with the 

maximal |𝑊(𝑘)|. 

However, few studies have investigated the influence of the probe 

spacing uncertainty on the F3S measurement, especially the spacing 

error propagation law. And there still lacks methods to reduce the 

adverse impact of the probe spacing uncertainty. Therefore, this paper 

aims to develop an effective method to quantitatively estimate the 

measurement uncertainty, which is introduced by the spacing 

uncertainty; then, develop a solution to cancel the measurement 

uncertainty. 

The rest of this paper is organized as follows. In Section 2, an 

algorithm of the F3S method based on the Laplace transform will be 

described. In Section 3, the adverse effect of the spacing deviation 

between the first and the second probes will be analyzed; and then, the 

spacing uncertainty propagation law will be algebraically derived by 

partial differential in the S domain; finally, to reduce the measurement 

uncertainty, a solution of spacing optimization will be developed based 

the uncertainty propagation law. In Section 4, to verify the effect of the 

spacing optimization, the Monte Carlo simulations will be conducted. 

The conclusions are drawn in Section 5. 

2. Principle of the F3S straightness measurement 

2.1 Laplace-transform-based algorithm of the F3S method 

Fig. 1 shows the schematic diagram of the F3S straightness 

measurement. To measure the slide error motion of the measurement 

section between 𝑀1 and 𝑀2, three displacement probes 𝑃1, 𝑃2 and 

𝑃3 are applied and mounted on a linear moving slide of the X-axis of 

a machine by a fixture. It should be noted that: the separating spacing 

between 𝑃2  and 𝑃3  constantly equals the length of measurement 

section 𝐿 ; 𝑃1  is installed between 𝑃2  and 𝑃3  with a spacing of 𝑑 

to 𝑃2.  

When the measurement starts, 𝑃1  moves from 𝑀1  to 𝑀2 , 

together with the other two probes, and three readings are taken. The 

readings of 𝑃1 , 𝑃2  and 𝑃3  are defined as 𝑚1(𝜃) , 𝑚2(𝜃)  and 

𝑚3(𝜃). 
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Fig. 1. Schematic diagram of F3S straightness measurement. 

To solve the nonlinear issue of the straightness measurement by the 

F2S method, the part of 𝑚2(𝜃) from the beginning of sampling to the 

time 𝑃2 arriving at 𝑀2 is cut off as 𝑚2
′ (𝜃); the part of 𝑚3(𝜃) from 

the time 𝑃2 arriving at 𝑀2 to the end of sampling is cut off as 𝑚3
′ (𝜃); 

then, 𝑚3
′ (𝜃)  is emerged to 𝑚2

′ (𝜃)  as the rectified signal 𝑚𝑟2(𝜃) . 

Thus, the probe readings can be written mathematically as follows:  

𝑚1(𝜃) = 𝑓(𝜃) + 𝑔(𝜃), (0 ≤ 𝜃 < 2𝜋)  (1) 

𝑚𝑟2(𝜃) =

{
  
 

  
 𝑚2

′ (𝜃) = 𝑓 (𝜃 +
2𝜋𝑑

𝐿
) + 𝑔(𝜃),

(0 ≤ 𝜃＜
2𝜋𝑑

𝐿
− 2𝜋)

𝑚3
′ (𝜃) = 𝑓 (𝜃 +

2𝜋𝑑

𝐿
− 2𝜋) + 𝑔(𝜃),

 (
2𝜋𝑑

𝐿
− 2𝜋 ≤ 𝜃＜2𝜋)

 (2) 

respectively. Here, 𝑔(𝜃) and 𝑓(𝜃) represent the slide error motion 
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and the workpiece profile, respectively; 𝜃  is the equivalent angular 

position of the probe 𝑃1 , which is expressed as 𝜃 =
2𝜋𝑥

𝐿
 ; 𝑥  is the 

actual position of 𝑃1 along the X-axis.  

Clearly, from Eq. (1) and (2), the probe readings 𝑚1 and 𝑚𝑟2 are 

both superposed of the slide error motion 𝑔(𝜃)  and the workpiece 

profile 𝑓(𝜃) . Moreover, 𝑚2  contains a phase shift 
2𝜋𝑑

𝐿
  caused by 

the Probe 𝑃2  position. Then, to calculate 𝑔(𝜃) , several steps are 

required, as follows. 

Step 1. Eliminate the influence of slide error motion 𝑔(𝜃)  by 

subtract 𝑚𝑟2(𝜃) from 𝑚1(𝜃):  

𝑚(𝜃) = 𝑚1(𝜃) − 𝑚𝑟2(𝜃) = 𝑓(𝜃) − 𝑓(𝜃 +
2𝜋𝑑

𝐿
) (3) 

Here, 𝑚(𝜃)  is usually called the weighted function. However, the 

phase shift 
2𝜋𝑑

𝐿
 still damage the result. 

Step 2. Remove the impact of the phase shift 
2𝜋𝑑

𝐿
 by employing 

the Laplace transform to Eq. (3):  

𝐹(𝑠) =
1

1−𝑒
2𝜋𝑑
𝐿
𝑠
𝑀(𝑠)    (4) 

Here, 𝐹(𝑠)  and 𝑀(𝑠)  are the Laplace transform of 𝑓(𝜃)  and 

𝑚(𝜃), respectively.  

Step 3. Transform the Laplace transform into Fourier transform by 

substituting 𝑠 = 𝑗𝑘 into Eq. (4):  

𝐹(𝑗𝑘) =
1

1−𝑒𝑗
2𝜋𝑑
𝐿
𝑘
𝑀(𝑗𝑘)    (5) 

Here, 𝐹(𝑗𝑘) and 𝑀(𝑗𝑘) are Fourier transform of 𝑓(𝜃) and 𝑚(𝜃), 

respectively. 𝑘 is the harmonic order, which equals ⋯, -2, -1, 0, 1, 2, 

⋯. Thus, 𝑓(𝜃) is easily assessed by applying inverse discrete Fourier 

transform to Eq. (5).  

The transfer function from 𝑀(𝑗𝑘) to 𝐹(𝑗𝑘) can be described as: 

𝑇(𝑗𝑘) =
1

1−𝑒
𝑗
2𝜋𝑑
𝐿
𝑘
    (6) 

Step 4. Apply the inverse discrete Fourier transform to 𝐹(𝑗𝑘):  

𝑓(𝜃) = 𝐹−1[𝐹(𝑗𝑘)]    (7) 

In this way, the workpiece profile 𝑓(𝜃) is finally estimated. 

Step 5. Calculate the slide error motion by subtracting 𝑓(𝜃) from 

𝑚1(𝜃) as follows: 

𝑔(𝜃) = 𝑚1(𝜃) − 𝑓(𝜃)    (8) 
Thus, the slide error motion can be exactly assessed. 

3. Reduction of the F3S measurement uncertainty 

introduced by deviation of the probe spacing 

3.1 The influence of probe spacing deviation on measurement 

accuracy 

To measure the target section of the slide error motion 𝑔(𝜃), the 

positions of 𝑃2  and 𝑃3  keep constant on the fixture in the F3S 

measurement. And the spacing always equals the length of the 

measurement section 𝐿 . Thus, in this paper, we assume that the 

spacing between the 𝑃2  and 𝑃3  is ideal, and only the adverse 

influence of the deviation of the spacing between 𝑃1  and 𝑃2  is 

estimated.  

Fig. 2 shows the effect of the spacing deviation between 𝑃1 and 

𝑃2 . The nominal dimension of the spacing between 𝑃1  and 𝑃2  is 

designed as 𝑑 . But to facilitate ease of transport, the probes are 

frequently mounted and unmounted. Due to the machining error of the 

probe mounting hole on the fixture, there is a spacing deviation ∆𝑑 

between 𝑃1  and 𝑃2 , which is randomly changed with each probe 

mounting operation, as shown in Fig. 2(a).  

As Eq. (6) describes, under ideal conditions without spacing 

deviation, the transfer function 𝑇(𝑗𝑘) =
1

1−𝑒𝑗
2𝜋𝑑
𝐿
𝑘
  is applied when 

calculating the slide error motion 𝑔(𝜃), as the black route in Fig. 2(b). 

However, the probe spacing deviation ∆𝑑  introduces a phase error 
2𝜋∆𝑑

𝐿
 of the transfer function. The actual transfer function is 𝑇(𝑗𝑘) =
1

1−𝑒𝑗
2𝜋(𝑑+∆𝑑)

𝐿
𝑘
, which should be employed in computing the slide error 

motion 𝑔(𝜃), which is shown by the red route in Fig. 2(b). Due to the 

spacing deviation ∆𝑑 is random and hard to evaluate, it is commonly 

neglected in actual measurement. Thus, the ideal condition is assumed, 

and wrongly apply the black calculating route in Fig. 2(b). As a result, 

a measurement error occurs. 

3.2 Reduction of the influence of the probe spacing deviation 

on the F3S measurement 

To enhance the accuracy of F3S measurement by mitigating the 

impact of spacing deviation, a critical step is to evaluate the 

quantitative effect of probe spacing deviation and uncertainty 

propagation law. Hence, in this subsection, based on the systematic 

theory, the uncertainty propagation law will be derived. 

Step 1, calculate the change rate of the estimated error of the slide 

error motion 𝑔(𝜃). 

The estimated error of the slide error motion 𝑔(𝜃)  in the S 

domain is assumed to be ∆𝐺(𝑠), which is introduced by the spacing 

deviation ∆𝑑. The change rate of the estimated error of the slide error 

motion 𝐺(𝑠) in the S domain: 

𝐸𝑟𝑎𝑡𝑒 =
∆𝐺(𝑠)

∆𝑑
     (9) 

Step 2, the partial derivation of 𝐺(𝑠) is introduced. 

For the continuous variation of the ∆𝐺(𝑠)  with the spacing 

deviation ∆𝑑, there is the algebraic limit of 𝐸𝑟𝑎𝑡𝑒 when ∆𝑑 close to 

zero. Then, the error change rate 𝐸𝑟𝑎𝑡𝑒 can be written as: 

lim
∆𝑑→0

𝐸𝑟𝑎𝑡𝑒 = lim
∆𝑑→0

∆𝐺(𝑠)

∆𝑑
=

𝑑

𝜕𝑑
𝐺(𝑠)   (10) 

Thus, the partial differential of the slide error motion with respect 

to the probe spacing 𝑑 in the S domain is introduced.   

Step 3, the partial differential of the slide error motion is calculated. 

From Eq. (8), the partial differential of the slide error motion in S 

domain can be derived as: 
𝑑

𝜕𝑑
𝐺(𝑠) =

𝑑

𝜕𝑑
𝑀1(𝑠) −

𝑑

𝜕𝑑
𝐹(𝑠)   (11) 

Here, 𝑀1(𝑠)  and 𝐹(𝑠)  is the Laplace transform of 𝑚1(𝜃)  and 

𝑓(𝜃), respectively. 

From Eqs. (4) and (11), the partial differential of the slide error 

motion is deduced as: 
𝑑

𝜕𝑑
𝐺(𝑠) =

𝑑

𝜕𝑑
𝑀1(𝑠) +

2𝜋𝑠

𝐿
𝑒−

2𝜋𝑑𝑠

𝐿
1

(1−𝑒−
2𝜋𝑑𝑠
𝐿 )

2𝑀(𝑠) =
𝑑

𝜕𝑑
𝑀1(𝑠) +

2𝜋𝑑𝑠

𝐿
𝑒−

2𝜋𝑑𝑠

𝐿
1

1−𝑒−
2𝜋𝑑𝑠
𝐿

𝐹(𝑠)   (12) 

Due to Probe 𝑃1  constantly moves from 𝑀1  to 𝑀2 , 𝑚1(𝜃) 

doesn’t vary with ∆𝑑. Thus, 
𝑑

𝜕𝑑
𝑀1(𝑠) equals 0. Thus, Eq. (12) can 

be improved as: 
𝑑

𝜕𝑑
𝐺(𝑠) =

2𝜋𝑑𝑠

𝐿
𝑒−

2𝜋𝑑𝑠

𝐿
1

1−𝑒−
2𝜋𝑑𝑠
𝐿

𝐹(𝑠)  (13) 

In order to investigate the estimated error in the harmonic domain, 



The 10th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2023) 

 

 

we take 𝑠 = 𝑗𝑘, so the Laplace transform is transferred to the Fourier 

transform as:  

𝜕

𝜕𝑑
𝐺(𝑗𝑘) = −

𝑗2𝜋𝑑𝑘

𝐿
𝑒−

𝑗2𝜋𝑑𝑘

𝐿
1

1−𝑒−𝑗
2𝜋𝑑𝑘
𝐿

𝐹(𝑗𝑘)  (14) 

To make it easier to study the relationship between the estimated 

error and the probe spacing deviation, Eq. (14) can be written as: 

𝜕𝐺(𝑗𝑘) = 𝐹(𝑗𝑘)
𝑗2𝜋𝑑𝑘

𝐿

1

1−𝑒−𝑗
2𝜋𝑑𝑘
𝐿

𝜕𝑑  (15) 

Thus, the partial differential of the slide error motion 𝐺(𝑗𝑘) with 

respect to the probe spacing 𝑑 can be evaluated. 
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Fig. 2. The adverse effect of the spacing deviation between 𝑃1 and 𝑃2 in the F3S measurement: (a) the probe spacing deviation, and (b) the 

resulting error.

Step 4, the harmonic uncertainty of slide error motion is derived. 

According to the ISO standard Supplement to GUM [17], the 

harmonic uncertainty can be defined as the standard deviation of the 

harmonic amplitude. Thus, from Eq. (15), the harmonic uncertainty 

𝑈ℎ(𝑘) can be derived as: 

𝑈ℎ(𝑘) = 𝐸{|𝜕𝐺(𝑗𝑘)|} = |𝐹(𝑗𝑘)|
2𝜋𝑑𝑘

𝐿
|
𝑒−

𝑗2𝜋𝑑𝑘
𝐿

1−𝑒
−𝑗
2𝜋𝑑𝑘
𝐿

| 𝜎𝑑 (16) 

Here, 𝜎𝑑 is the standard deviation of the probe spacing.  

Thus, the overall harmonic uncertainty can be calculated as: 

𝑈𝐻(𝑘) = √∑ [𝑈ℎ(𝑘)]
2𝑁𝑐𝑢𝑡−𝑜𝑓𝑓

𝑘=1 =

√∑ [|𝐹(𝑗𝑘)|
2𝜋𝑑𝑘

𝐿
|
𝑒−

𝑗2𝜋𝑑𝑘
𝐿

1−𝑒−𝑗
2𝜋𝑑𝑘
𝐿

| 𝜎𝑑]

2
𝑁𝑐𝑢𝑡−𝑜𝑓𝑓
𝑘=1   (17) 

Here, 𝑁𝑐𝑢𝑡−𝑜𝑓𝑓 is the cut-off harmonic. 

Due to unvaried measurement section and machining errors of the 

fixture, |𝐹(𝑗𝑘)|  and 𝜎𝑑  keep constant, respectively. Therefore, the 

overall harmonic uncertainty can be simplified as: 

𝑈𝐻(𝑘) = √∑ [
2𝜋𝑑𝑘

𝐿
|

1

1−𝑒−𝑗
2𝜋𝑑𝑘
𝐿

|]
2

𝑁𝑐𝑢𝑡−𝑜𝑓𝑓
𝑘=1   (18) 

Step 5, reduce measurement uncertainty by optimizing the probe 

spacing. 

From Eq. (18), it is easy to know that the overall harmonic 

uncertainty related to the probe spacing 𝑑. Thus, an optimized probe 

spacing 𝑑𝑜𝑝 can be achieved when overall harmonic uncertainty is the 

lowest, which can be described as: 

𝑑𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑈𝐻(𝑘)} =

 𝑎𝑟𝑔𝑚𝑖𝑛{√∑ [
2𝜋𝑑𝑘

𝐿
|

1

1−𝑒
−𝑗
2𝜋𝑑𝑘
𝐿

|]
2

𝑁𝑐𝑢𝑡−𝑜𝑓𝑓
𝑘=1 }  (19) 

In this way, we can acquire the highest measurement accuracy by 

applying the optimized spacing 𝑑𝑜𝑝 in F3S measurements. 

4. Simulation verification 

4.1 Simulation conditions 

For verification of the method to reduce the measurement 

uncertainty, which is introduced by the spacing uncertainty, numerical 

simulations are carried out. In the simulations, the workpiece profile 

and the slide error motion are given as follows: 

𝑓(𝜃)̅̅ ̅̅ ̅̅ = ∑ 6𝑒−0.08𝑘 cos(𝑘𝜃 + 𝜑𝑘𝑓) , (0 ≤ 𝜃 < 2𝜋)
𝑁
𝑘=1  (20) 

𝑔(𝜃)̅̅ ̅̅ ̅̅ = ∑ 4𝑒−0.12𝑘 cos(𝑘𝜃 + 𝜑𝑘𝑔) , (0 ≤ 𝜃 < 2𝜋)
𝑁
𝑘=1  (21) 

Here, 𝑓(𝜃)̅̅ ̅̅ ̅̅  and g(𝜃)̅̅ ̅̅ ̅̅  are the given actual workpiece profile and 

the actual slide error motion, respectively; 𝜑𝑘𝑓  and 𝜑𝑘𝑔  are 

harmonic phases of the 𝑘𝑡ℎ harmonic, which are taken randomly; and 

N is the cut-off harmonic, in this paper 𝑁=30.  

Fig. 3 demonstrates the actual workpiece profile and the actual 

slide error motion. The measurement section was from 0 to 100 mm, 

namely, L = 100 mm. And 𝑑 = 21.4 mm. To ensure the reliability, the 

simulations were performed 1000 times. To simulate the actual 

condition, the probe spacing deviation ∆𝑑  was given randomly in 

each measurement, and ∆𝑑 obeyed the normal distribution. In each 

time of the simulation, we also calibrated the probe spacing, and we 

counted the frequency of ∆𝑑, wherein ∆𝑑~𝑁(0,0.39 μm2).  
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Fig. 3. The actual workpiece profile and the slide error motion. 

 

Fig. 4. The probe signals. 

 

Fig. 5. The adverse impact of the spacing uncertainty on the F3S measurement. 
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4.2 Demonstration of the adverse influence of the spacing 

deviation on measurement accuracy 

The probe signals are shown in Fig. 4. Due to the spacing deviation, 

the rectified signals 𝑚𝑟2, which is composed of second and third probe 

signals, are dispersive.  

Fig.5 shows the results of the F3S measurement when 𝑑 equals 

21.4 mm. The slide error motion, which is estimated by the F3S 

measurement without spacing uncertainty, greatly agrees with the 

actual one both in spatial (see Fig. 5 (a)) and harmonic domain (see Fig. 

5 (b)). Thus, the F3S method can precisely assess the slide error motion 

by canceling the influence of the workpiece profile. However, when 

there is spacing uncertainty, the estimated slide error motion curves 

disperse randomly with a fluctuating error of 25 μm in the spatial 

domain, as shown in Fig. 5(a); in the harmonic domain, large 

deviations at some harmonics: 14th and 28th harmonics. This suggests 

that the spacing uncertainty leads to the large estimated harmonics error 

and the spatial fluctuating errors. 

4.3 Numerical verification of the probe spacing uncertainty 

propagation law 

In the ISO standard Supplement to GUM [17], the Monte Carlo 

method, which has been considered one of the most powerful tools to 

assess the impact of multiple factors, is applied to count the 

measurement uncertainty. Hence, to validate the spacing uncertainty 

propagation law, Monte Carlo simulation is performed to count the 

harmonic uncertainty of the F3S measurement as:  

𝑈𝑐(𝑘) = {
1

𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒

∑ [|𝐺𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖(𝑗𝑘)| −
𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑖=1

1

𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒

∑ |𝐺𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖(𝑗𝑘)|
𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑖=1 ]

2
}
1/2

  (22) 

Here, 𝑈𝑐  is the statistical harmonic uncertainty; 𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒  is 

the simulation times, which equals 1000 in this paper, 

𝐺𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖(𝑗𝑘)  is the estimated Fourier coefficients of slide error 

motion. 

Fig. 6 shows the comparison of the derived and the statistical 

harmonic uncertainty under the condition as subsection 4.1 described. 

Although there exists a maximal difference between the derived and 

the statistical harmonic uncertainty of 0.6 μm (6%) at the 28th 

harmonic, the derived uncertainties at almost each harmonic are well 

agreed with the statistical ones. This suggests that the derived 

uncertainties propagation law can quantify the influence of the spacing 

uncertainty in the F3S measurement. 

 

U
h
(k

)

 

Fig. 6. The comparison of the derived and the statistical harmonic uncertainty. 

 

Fig. 7. The optimized spacing is defined via the derived harmonic uncertainty propagation law. 
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Fig. 8. The optimized spacing computed by Monte Carlo simulations. 

 

4.4 Verification of probe spacing optimization based on the 

derived uncertainties propagation law 

From Eq. (18), we can easily know that the F3S measurement 

uncertainty relates to the spacing 𝑑 . Thus, a spacing 𝑑𝑜𝑝  can be 

defined to achieve the smallest measurement uncertainty. To calculate 

the optimized spacing 𝑑𝑜𝑝, Eq. (19) was applied.  

Due to the spacing error can cause significant measurement 

uncertainty, for convenient comparison, the reciprocal of measurement 

uncertainty is employed, as shown in Fig. 7. And the optimized 𝑑𝑜𝑝 

equals 48.7 mm, as marked by the red rhombus in Fig. 7. 

Conventionally, to confirm the optimized spacing, Monte Carlo 

simulations were applied to compute the measurement uncertainty 

under all spacing d; then, find out the spacing d of the smallest 

measurement uncertainty in the spatial domain. The spatial 

measurement uncertainty can be described as: 

𝑈 = √
1

𝑁𝑝𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒

∑ ∑ (𝑔𝑖(𝑥𝑖𝑝) − 𝑔𝑚𝑒𝑎𝑛(𝑥𝑖𝑝))
2

𝑀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒

𝑖=1

𝑁𝑝
𝑖𝑝=1

(23) 

where 𝑁𝑝  is the total number of sampling points of the slide error 

motion.  

With the same probe spacing uncertainty, the spatial measurement 

uncertainty under the spacing from 10 mm to 90 mm is calculated by 

conducting Monte Carlo simulations. For convenient demonstration, 

the reciprocal of measurement uncertainty is employed, as shown in 

Fig. 8. Thus, the optimized spacing, which also equals 48.7 mm, can 

be calculated at the maximal reciprocal of measurement uncertainty, 

where the smallest measurement uncertainty of 2.2 μm can be achieved, 

as marked by the red rhombus in Fig. 8. Thus, it suggests that, on the 

one hand, for enhancement of the F3S measurement precision, it is 

rational to optimize the spacing between the first and second probe 

based on the derived measurement uncertainty propagation law; on the 

other hand, it confirms the reliability of the uncertainty propagation law 

again. 

5. Conclusions 

(1) The adverse influence of the spacing deviation on the F3S 

measurement of slide error motion was theoretically analyzed.  

(2) The probe spacing uncertainty propagation law in the F3S 

measurement, which can quantify the influence of the spacing 

uncertainty, was algebraically deduced by deriving the partial 

differential of the S function.  

(3) To reduce the measurement uncertainty introduced by the 

spacing uncertainty, a method of optimizing the spacing 𝑑  was 

proposed based on the uncertainty propagation law, which was verified 

by Monte Carlo simulations. 
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