Skip to main content Start main content

最新消息

1

Interview of IWEAR team led by Prof. Xiaoming Tao and Prof. Margaret Mak on Now TV: Introducing a Wearable Device to Aid Parkinson's Patients in Overcoming Walking Difficulties (only English version is available)

Prof. Xiaoming TAO and Prof. Margaret MAK of IWEAR were invited by Now TV to discuss a groundbreaking wearable device designed to assist Parkinson's patients in overcoming walking difficulties. The complete interview can be viewed by clicking on the following link: https://www.youtube.com/watch?v=2C_2vWZdaPA

2024年2月21日

Picture1

IWEAR hosted the annual retreat (only English version is available)

2024年2月6日

Dr Fu Guangwei

壽大華博士承辦和主持第十三屆中國紡織學術年會·青年學者論壇

        2023年11月,利民先进纺科技青年學者壽大華博士代表香港理工大學在蘇州承辦第十三屆中國紡織學術年會·青年學者論壇。中國紡織學術年會是中國紡織工程學會全力搭建的高端學術交流、高層次創新人才表彰、優秀科研成果發佈的權威平臺,多次入選中國科協《重要學術會議指南》目錄,著力為參會者構建主會場、專題分會場、特色論壇、表彰獎勵、展覽展示等五大模組的專業性學術會議體系,自2011年起已成功召開12屆。        論壇以“從基礎研究到應用轉化”为主题,聚焦推動紡織健康、智慧和運動領域的尖端科技交流和轉化,吸引了近200名青年學者、醫生和企業家及代表參加。中國紡織工程學會理事長、中國紡織工業聯合會檢測中心主任、國家紡織面料館董事長伏廣偉為論壇開幕致辭,香港理工大學時裝及紡織學院院長Cho Erin教授致歡迎詞,科技部中國科學技術交流中心港澳臺處處長管海波為論壇作主旨報告。會上,來自哈佛大學、北京大學、清華大學、復旦大學、香港理工大學、東南大學、東華大學、江南大學、青島大學、安徽工程大學以及亞瑟士(中國)、盛澤青商會、全棉時代、361度、蕉下、翔步紡織科技等單位企業代表彙聚一堂。圍繞“智慧可穿戴、健康新材料和綠色可持續”,與會代表深入探討了聯合研發、融合轉化和共創共用模式等方面的合作機會。論壇的舉辦不僅加強了產學研合作,還為跨領域協同發展開啟了新的篇章。        會議主題報告環節由香港理工大學博士生導師壽大華和遠也科技創始人、哈佛大學博士丁也擔任主持。北京大學第三醫院運動醫學科副教授劉玉雷、復旦大學研究員陳培甯、北京清華長庚醫院皮膚科主任醫師黃晨昱、東南大學能源與環境學院教授趙東亮、哈佛大學博士丁也、東華大學教授游正偉、亞瑟士(中國)商貿有限公司服飾研發負責人孫玉婷以及香港理工大學勵學青年學者席壽大華進行了主題彙報,介紹了智慧可穿戴與先進紡織科技、運動醫學臨床實踐與紡織工程、織物顯示器件與集成系統、力生物學和機械治療學、熱濕管理的功能織物、智慧可穿戴機器人、仿生彈性體纖維器件以及高性能纖維運動服飾等領域的最新科研進展及應用轉化。在會議現場,參會代表和報告嘉賓們展開了多輪熱烈而深入的互動交流,分享了各自的專業知識和經驗。  

2023年12月15日

Research

IWEAR hosted the PAIR Conference with theme of Intelligent Wearable Systems.

The Research Institute for Intelligent Wearable Systems (RI-IWEAR) hosted the PAIR Conference on 10 May 2023, with theme of Intelligent Wearable Systems. The conference was attended by experts, researchers, and professionals from various fields. The whole conference featured talks by eight speakers' presentation, two panel discussion, and one poster presentaion section.   The first speaker, Prof. Dinggang SHEN, founding dean from the School of Biomedical Engineering, ShanghaiTech University, presented on the topic of Fast Development and Deployment of AI Techniques for Real Medical Applications. The second speaker, Prof. Feng YAN, ADoRI of IWEAR and Chair Professor of Organic Electronics from Department of Applied Physics, Faculty of Science, The Hong Kong Polytechnic University, presented on the topic of Organic Electrochemical Transistors for Sensing Applications. The thrid speaker, Prof. Yang CHAI, Associate Dean of Faculty of Science and Professor of Department of Applied Physics, the Hong Kong Polytechnic University presented on the topic of Retina-inspired Vision Sensors. The fourth speaker, Dr Xinge YU, Associate Professor of Department of Biomedical Engineering, City University of Hong Kong, presented on the topic of Intelligent Skin Electronics for Healthcare Monitoring and XR. The fifth speaker, Prof. ZHENG Zijian, ADoRI of IWEAR and Chair Professor of Soft Materials and Devices of Department of Applied Biology and Chemical Technology, Faculty of Science, the Hong Kong Polytechnic University, presented on the topic of Textile Composite Electrodes for Extreme-Flexible Batteries and Beyond. The sixth speaker, Prof. Robert YOUNG, Professor of Polymer Science and Technology, Department of Materials, The University of Manchester, presented on top of Multifunctional Nanocomposites: Achievements and Prospects. The seventh speaker, Dr Lin SHU, Senior Engineer of Associate Head, School of Future Technology, South China University of Technology, presented on topic of Research and Application of Wearable Physiological and Psychological Computing Technology. The eighth speaker, Prof. Wei ZENG, Professor of Institute of Chemical Engineering, Guangdong Academy of Sciences, presented on topic of Ionic Thermoelectric Generator with a Giant Output Power Density and High Energy Density Enabled by Synergy of Thermodiffusion and Redox-pair Transfer Effect.   After the experts' sharing on the theme of Intelligent Wearable Systems, Dr Olga BUBNOVA, Chief Editor of Nature Reviews Electrical Engineering, presented on topic of Publishing in Nature Portfolio – from Nature Research journals to Nature Reviews journals. After, the other panel discussion on the topic pf Challenges and Opportunities of Intelligent Wearable Systems was held, with Prof. Feng YAN, Prof. Wei ZENG, and Dr Lin SHU as main speakers and Prof. Xiaoming TAO as moderator. At the end of the conference, there was the poster presentation section. Overall, the conference was a great success, providing a platform for experts and researchers to share their knowledge and experiences on intelligent wearable systems. The Research Institute for Intelligent Wearable Systems will continue to organise similar events in the future, to continue promoting research and development in the field.    

2023年5月10日

20230426-0

傳感器端計算的研究發表《自然納米技術》上(只有英文版本)

(只有英文版本)Prof. Yang CHAI, a member of RI-IWEAR, collaborated with the researchers at Yonsei University in Korea and published an article entitled “Optoelectronic graded neurons for bioinspired in-sensor motion perception” in Nature Nanotechnology.    The motion perception by conventional machine vision usually occupies abundant computation resources, which greatly restricts its application at edge terminals. To perceive the dynamic motion at sensory terminals, it demands the hardware that can conduct visual processing in a more efficient way. Flying insects can agilely detect the motion with a tiny visual system (~800 photoreceptors and 10^5 neurons in the brain), which inspires us to emulate the characteristics with hardware devices for in-sensor motion perception.   One of the reasons for the agile visual system of flying insect is its graded neural structure, which exhibits much higher information transmission rate (>1000 bit/s) than that of spiking neuron (~300 bit/s) and allows to fuse spatiotemporal information at sensory terminals. Prof. Chai’s team adopted MoS2 phototransistor to emulate the non-spiking graded neurons of insect vision systems. The charge dynamics of the shallow trapping centres in MoS2 phototransistors mimic the characteristics of graded neurons, exhibiting multilevel response and volatile feature.   The optoelectronic graded neuron array can directly perceive different types of motion. The bioinspired sensor array can detect trajectories in the visual field with very economical hardware devices, allowing the efficient perception of the direction of the moving objects. By modulating the charge dynamics of the shallow trapping centres in MoS2 phototransistor, the bioinspired sensor array can recognize the motion with a temporal resolution ranging from 10^1 to 10^6 ms.   The bioinspired sensors have potential applications in robotics and artificial intelligence. For example, it could be used to develop more efficient and robots with better motion perception abilities by detecting and responding to the moving objects in the surrounding environment.

2023年5月4日

20230428

發表在《生物活性材料》上的人造纖毛新研究(只有英文版本)

(只有英文版本)Preservation of growth factor sensitivity and bioactivity (e.g., bone morphogenetic protein-2 (BMP-2)) postimmobilization to tissue engineering scaffolds remains a great challenge. Dr Xin ZHAO, member of RI-IWEAR, collaborated with Prof. Zijian ZHENG, Associate Director of RI-IWEAR developed a stable and soft surface modification strategy to address this issue. BMP-2 (a model growth factor) is covalently immobilized onto homogeneous poly (glycidyl methacrylate) (PGMA) polymer brushes which are grafted onto substrate surfaces (Au, quartz glass, silica wafer, or common biomaterials) via surface-initiated atom transfer radical polymerization. This surface modification method multiplies the functionalized interfacial area; it is simple, fast, gentle, and has little effect on the loaded protein owing to the cilia motility. The immobilized BMP-2 (i-BMP-2) on the surface of homogeneous PGMA polymer brushes exhibits excellent bioactivity (⁓87% bioactivity of free BMP-2 in vitro and 20%–50% higher than scaffolds with free BMP-2 in vivo), with conformation and secondary structure well-preserved after covalent immobilization and ethanol sterilization. Moreover, the osteogenic activity of i-BMP-2 on the nanoline pattern (PGMA-poly (N-isopropylacrylamide)) shows ⁓110% bioactivity of free BMP-2. This is superior compared to conventional protein covalent immobilization strategies in terms of both bioactivity preservation and therapeutic efficacy. PGMA polymer brushes can be used to modify surfaces of different tissueengineered scaffolds, which facilitates in situ immobilization of growth factors, and accelerates repair of a wide range of tissue types. This research was published in Bioactive Materials, Volume 24, June 2023.

2023年4月28日

20230426

陶肖明教授被任命為特種纖維複合材料國家重點實驗室顧問

熱烈恭賀智能可穿戴系統研究院院長陶肖明教授,獲特種纖維複合材料國家重點實驗室委任為顧問,任期由2023年4月起,為期5年。   特種纖維複合材料國家重點實驗室旨在針對國家特種纖維複合材料行業發展中急需解決的關鍵技術和共性技術問題,開展應用基礎研究、性能測試及評價技術研究。

2023年4月26日

Jinjiang delegation visits_17

晉江市政府及企業領導參觀智能穿戴系統研究院(只有英文版本)

(只有英文版本)The Hong Kong Polytechnic University (PolyU) and the city government of Jinjiang have come to an agreement to jointly establish the PolyU-Jinjiang Research Institute to strengthen research collaboration among industry, academia, and research organisations to drive development along the 21st Century Maritime Silk Road. The signing ceremony of the agreement was held On 17 February at the PolyU campus.   Before the signing ceremony, the delegation of leaders from the Jinjiang government and businesses visited the Research Institute for Intelligent Wearable Systems (RI-IWEAR). The delegation was warmly welcomed by Prof. Xiaoming TAO, Director of RI-IWEAR, along with other members of the institute.   During the visit, the delegation was given an introduction of the latest developments in intelligent wearable systems. They were also briefed on the institute’s research projects, including the development of smart clothing for healthcare and sports, as well as the use of big data and artificial intelligence in wearable technology.   The delegation expressed great interest in the research being carried out at the institute and saw the potential for collaboration with businesses in Jinjiang. They also spoke highly of PolyU’s reputation as a leading research institution in the field of wearable technology. Overall, the visit was a success in promoting greater collaboration and knowledge sharing between PolyU and businesses in Jinjiang.

2023年2月21日

20230210-1

智能可穿戴系統研究院在2023年2月10日舉行了第五場研討會(只有英文版本)

(只有英文版本)The Research Institute for Intelligent Wearable Systems (RI-IWEAR) hosted the fifth seminar on February 10, 2023. The hybrid-mode seminar was attended by experts, researchers, and professionals from various fields related to intelligent wearable systems.   The seminar featured talks by two speakers included presentations and discussions. The first speaker, Prof. Li Zhang, from the Department of Surgery at The Chinese University of Hong Kong (CUHK), presented on the topic of Miniature origami robots and flexible devices for endoluminal applications. The second speaker, Dr Shiming Zhang, an Assistant Professor from the Department of Electrical and Electronic Engineering at The University of Hong Kong (HKU), presented on the topic of Scalable manufacturing of soft bioelectronics: materials, devices, and applications.   Overall, the seminar was a great success, providing a platform for experts and researchers to share their knowledge and experiences on intelligent wearable systems. The Research Institute for Intelligent Wearable Systems plans to organise similar events in the future, to continue promoting research and development in the field.

2023年2月13日

20230203

祝賀嚴鋒教授和鄭子劍教授晉升講席教授(只有英文版本)

(只有英文版本)Prof. Feng YAN, Associate Director (Research) of RI-IWEAR, Prof. Zijian ZHENG, Associate Director (External) of RI-IWEAR, and Prof. Gang Li, member of RI-IWEAR were promoted to Chair Professorship in the University with effect from 1 February 2023. The post titles are as listed in the table.    Name   Post Title  Professor Gang LI  Chair Professor of Energy Conversion Technology  Professor Feng YAN  Chair Professor of Organic Electronics  Professor Zijian ZHENG  Chair Professor of Soft Materials and Devices In alphabetical order by surname Congratulation on their promotion.

2023年2月3日

您的瀏覽器不是最新版本。如果繼續瀏覽本網站,部分頁面未必能夠正常運作。

建議您更新至最新版本或選用其他瀏覽器。您可以按此連結查看其他相容的瀏覽器。