Skip to main content
Start main content

Modelling representations in speech normalization of prosodic cues

Si, C., Zhang, C., Lau, P., Yang, Y., & Li, B. (2022). Modelling representations in speech normalization of prosodic cues. Scientific Reports, 12(1), [14635]. https://doi.org/10.1038/s41598-022-18838-w

 

Abstract

The lack of invariance problem in speech perception refers to a fundamental problem of how listeners deal with differences of speech sounds produced by various speakers. The current study is the first to test the contributions of mentally stored distributional information in normalization of prosodic cues. This study starts out by modelling distributions of acoustic cues from a speech corpus. We proceeded to conduct three experiments using both naturally produced lexical tones with estimated distributions and manipulated lexical tones with f0 values generated from simulated distributions. State of the art statistical techniques have been used to examine the effects of distribution parameters in normalization and identification curves with respect to each parameter. Based on the significant effects of distribution parameters, we proposed a probabilistic parametric representation (PPR), integrating knowledge from previously established distributions of speakers with their indexical information. PPR is still accessed during speech perception even when contextual information is present. We also discussed the procedure of normalization of speech signals produced by unfamiliar talker with and without contexts and the access of long-term stored representations.

 

FH_23Link to publication in scientific reports

FH_23Link to publication in Scopus

 

Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here