Wearable System with Adaptive Cooling and Heating for Sport Recovery- COOLWEAR
Prof. Xiaoming TAO, Director of RI-IWEAR, and Prof. Amy FU, recently secured approximately HK$7 million under the Sports Science and Research Funding Scheme for a 2-year research project entitled “Wearable System with Adaptive Cooling and Heating for Sport Recovery- COOLWEAR”.
Rapid contrast-temperature therapy (RCT) with water immersion has been used by elite sportsmen for faster recovery after competition and performance enhancement in the following match. The sharp contrast in water temperature facilitates fast heat transfer from or to the human body and promotes vasodilation thus increasing the metabolism of lactate, and speed up muscle and psychological recovery.
On the field, the required cold-hot water immersion cycles are achieved by the athletes jumping into two separate containers in a sequential manner. The process is inconvenient for the athletes. These bulky devices require a large space, thus cumbersome in setting up and transportation. Personal hygiene is also a concern if sharing water containers with multiple users.
In the contrast, a lightweight, flexible wearable system is much more desirable for on-field applications where a large space and AC power supply are not readily available. The wearable system shall provide the rapid heat transfer to realize the required temperature contrast, identical to those used in the water immersion method while maintaining a similar hydraulic pressure. The dry personalized wearables are much more convenient to use and to set up with no hygienic concerns. Up-to-date, no commercial system for an on-field application can offer the required RCT function.
The interdisciplinary team aims to develop a first-of-the-kind, convenient, smart, and personalized wearable COOLWEAR system that provides active RCT together with compression, which targets on-field applications for elite athletes’ competitions, in order to achieve fast sports recovery, enhance performance and reduce injury.
The wearable system shall comprise at least the energy transfer, close-loop control, and power supply units. Technically, the biggest challenge is a large amount of heat energy to be transferred between the human body and the fabric-based wearable system within a short time of several seconds, the heat power alone being estimated in hundreds of watts. The mechanical, hydraulic, and control units have to be highly efficient with a limited electric energy supply. To reach an even spatial distribution of the required temperature within a large fabric surface is also a huddle. There have been no established analytic methods as well as no engineering design tool for such hydraulic heat-transfer textile devices as well as garments. Fabrication of such devices required streamlining and optimization of several textile and garment processing technologies. The project will deliver new analytical and design tools based on an engineering scientific foundation for such function textile/garment.
Multi-domain recovery will be evaluated which includes muscle tone characteristics, sleep, heart rate variability, and self-anticipated effectiveness. The personalized protocol will be selected by considering the needs and sizes of the athletes and the responses from the recovery markers.