Skip to main content Start main content
Prof Daniel LAUDeveloping highefficiency carbon dioxide electroreduction system and progressing carb

Prof. Daniel Lau’s research team develops high-efficiency CO2 electroreduction system for reducing carbon footprint and progressing carbon neutrality goals

We are delighted to share with you that Professor Daniel Lau, our RISE Management Committee member’s research team has a significant achievement - Develops high-efficiency CO2 electroreduction system for reducing carbon footprint and progressing carbon neutrality goals   It is a collaborative research led by Professor Lau, and consists of researchers from the University of Oxford, the National Synchrotron Radiation Research Centre of Taiwan and Jiangsu University. Recently, this research was published in Nature Energy and won a Gold Medal at the 48th International Exhibition of Inventions Geneva in Switzerland.   Ethylene is one of the most in-demand chemicals globally and is mainly used in the manufacture of polymers. However, the production process of ethylene creates of a significant carbon footprint. The innovative system that can convert CO2 into ethylene can contribute to reducing carbon emissions and achieving the goal of carbon neutrality. (Ming Pao Daily News A08, Hong Kong Economic Journal A09, Wen Wei Po A13)   Press release: English - https://polyu.me/3Sto6EE; Chinese - https://polyu.me/48IfgZt   Online coverage: Tech Xplore - https://polyu.me/3u65cun ETNet - https://polyu.me/4922GE7 Ming Pao Daily News - https://polyu.me/4b4e7Nz Hong Kong Economic Journal - https://polyu.me/4932cxB Wen Wei Po - https://polyu.me/3UaP5Gl Dot Dot News - https://polyu.me/3u847C8 Yahoo News US - https://polyu.me/47MWqzb Yahoo Finance UK - https://polyu.me/3SaHqFo Sina HK - https://polyu.me/3SfUr0K WT News - https://polyu.me/3SEBt5n GBA Biz Tech Magazine - https://polyu.me/3OghVkV China.com - https://polyu.me/3u3NTdn East Money - https://polyu.me/3HBmGBL

24 Jan, 2024

News Sharing

News Sharing: UGC highlights impact of Prof. Shengwei Wang’s research

Professor Shengwei Wang, our RISE Director and his team’s achievements in saving energy and reducing carbon emission were featured in the Thematic Report commissioned by the University Grants Committee (UGC), underlining the impact of Prof. Wang’s research.   Online coverage: Hong Kong Economic Journal - https://polyu.me/3RWxXS3

12 Jan, 2024

NEWS Sharing

News Sharing: Professor Shengwei WANG on building energy system optimisation

Professor Shengwei Wang, our RISE Director and Chair Professor of Building Energy and Automation, introduced China Daily to the building energy system optimisation platform developed by his team. The platform provides tailor-made solutions for different buildings to boost energy efficiency and energy flexibility. It has been implemented various buildings, such as helping the 118-storey International Commerce Centre in West Kowloon save about 10 million kWh of electricity each year. Online coverage: China Daily Hong Kong Edition - https://polyu.me/3NBnBWq

22 Dec, 2023

Highly cited Researchers

8 RISE members recognised amongst the world′s most highly cited researchers in 2023

We are delighted to announce that 8 RISE members are recognized as highly cited researchers 2023 by Clarivate Analytics! It shows significant contributions of our RISE members and their efforts in different research fields. We highly appreciate the efforts of our RISE members and wish them even greater success in their academic career, to brings more impactful research achievements and innovative deliverables to local, nations and the world.  In this year, there are 6,849 highly citied researchers. Their papers rank in the top 1 % by citations for a field or fields and publication year in the Web of Science. Congratulations to our highly cited researchers! RISE highly cited researchers in 2023 Name (by alphabetical order of surname) Category  Prof. Daniel S.P. LAU (AP)  Cross-Field  Prof. Gang LI (EEE)  Cross-Field  Dr Ruijie MA (EEE)  Cross-Field  Prof. Tom Tao WU (AP)  Cross-Field  Prof. Feng YAN (AP)  Cross-Field  Dr Xiao ZHANG (ME)  Cross-Field  Prof. Jinyue YAN, Jerry (BEEE)  Engineering  Dr Bolong HUANG (ABCT)  Chemistry   PolyU Press: https://www.polyu.edu.hk/en/media/media-releases/2023/1121_15-polyu-academics-recognised-amongst-worlds-most-highly-cited-researchers/ Reference: https://clarivate.com/highly-cited-researchers/

22 Nov, 2023

Energyfield

PolyU has largest number of scientists in Hong Kong ranked within top 2% in Energy field internationally

In the latest release of the Stanford University-led compilation of citation indicators, PolyU has the largest number of top 2% scholars in Energy field in Hong Kong. Energy field is also one of the top 5 field in PolyU, while 9 RISE members are listed. It is an encouraging milestone to them and RISE.  Sincere gratitude to the achievements and recognition in Energy research. RISE will continue develop innovative energy technologies and carbon-neutral solutions, to bring greater impacts on academia, industry and society. Congratulations! Read more: 208 PolyU scholars ranked among world’s top 2% most-cited scientists 9 RISE members are listed as top 2% scholars in Energy Field  Name (by alphabetical order of surname) Dr AN Liang Dr CAO Sunliang  Dr HUANG Xinyan Ir Prof. LU Lin, Vivien Prof. NI Meng Ir Prof. WANG Shengwei Prof. XU Zhao Prof. YAN Jinyue, Jerry Ir Prof. YANG Hongxing Reference: The list can be downloaded from here. Ioannidis, John P.A. (2023), “October 2023 data-update for "Updated science-wide author databases of standardized citation indicators"”, Elsevier Data Repository, V6, doi: 10.17632/btchxktzyw.6

2 Nov, 2023

33 RISE Scholars Ranked Worlds Top 2  Scientists Released by Stanford University

33 RISE Scholars Ranked World’s Top 2% Scientists Released by Stanford University

Stanford University has released an update for science-wide author databases of standardized citation indicators in October 2023. 33 RISE scholars recognized as top 2% of the most-cited scientists in various fields. It is prepared by a team of experts led by Professor John P.A. loannidis of Stanford University. The publicly available database provides standardized information on citations, h-index, co-authorship adjusted hm-index, citations to papers in different authorship positions and a composite indicator (c-score). The list can be downloaded from here. Congratulations to our RISE top scholars! Reference: Ioannidis, John P.A. (2023), “October 2023 data-update for "Updated science-wide author databases of standardized citation indicators"”, Elsevier Data Repository, V6, doi: 10.17632/btchxktzyw.6   RISE Top 2% Scientists in the Global List  Name (by alphabetical order of surname) Subject Field (Rank within field) Dr AN Liang Energy Prof. CAO Jiannong  Networking & Telecommunications Dr CAO Sunliang  Energy Prof. CHAI Yang Nanoscience & Nanotechnology Prof. DAI Jian-Guo Building & Construction Dr DONG You Civil Engineering Prof. HAO Jianhua Nanoscience & Nanotechnology Dr HUANG Bolong Nanoscience & Nanotechnology Prof. HUANG Haitao Nanoscience & Nanotechnology Dr HUANG Xinyan Energy Prof. LAU Shu Ping, Daniel Applied Physics Prof. LI Gang Nanoscience & Nanotechnology Ir Prof. LU Lin, Vivien Energy Ir Prof. MUI Kwok Wai, Horace Building & Construction Prof. NI Meng Energy  Ir Prof. NIU Jianlei Building & Construction Dr SHOU Dahua Materials Prof. TAO Xiaoming Materials Dr WANG Peng Nanoscience & Nanotechnology Ir Prof. WANG Shengwei Energy Prof. WONG Yuhong Building & Construction Ir Dr WONG Ling Tim Building & Construction Prof. WONG Wai Yeung, Raymond Organic Chemistry Prof. XIAO Fu, Linda Building & Construction Prof. XU Bingang Materials Prof. XU Zhao  Energy Prof. YAN Feng  Nanoscience & Nanotechnology Prof. Jinyue YAN Jerry Energy Ir Prof. YANG Hongxing  Energy Dr YAO Haimin Mechanical Engineering & Transports Dr ZHENG Guangping  Materials Prof. ZHENG Zijian Nanoscience & Nanotechnology Prof. ZHU Songye Civil Engineering

1 Nov, 2023

APAPER1

A paper of RISE members published in “Cell Reports Physical Science” has received wide attention of scientific media

On 18 October 2023, the Prof. Shengwei Wang and two young members (Yinbo Zhang, the first author, and Hangxin Li) from the BEAR team in RISE and BEEE of PolyU published a research paper titled "The global energy impact of raising the space temperature for high-temperature data centres" in the journal ‘Cell Reports Physical Science’   After the online publication of this paper, it is immediately reported by many renowned scientific news outlets including EurekAlert, ScienceDaily, NewScientist, Techxplore, EurasiaReview, and Mirage News, etc. EurekAlert reported this paper as ‘How to build greener data centers? Scientists say crank up the heat’. Meanwhile, many other famous science news media also reprinted this report, such as Phys.org, the website of the American Physicists' Organisation.   Cell Reports Physical Science, published by Cell Press, is a broad-scope, open-access journal that publishes high-quality and cutting-edge research across the spectrum of the physical sciences, including chemistry, physics, materials science, energy science, engineering, and related interdisciplinary work.   EurekAlert! is the world's largest, most authoritative and nonprofit news-release distribution platform covering all areas of science, medicine and technology, operated by the American Association for the Advancement of Science (AAAS). AAAS was the first permanent organization to promote science and engineering nationally and to represent the interests of American researchers from across all scientific fields. It is the world's largest general scientific society, with over 120,000 members, and is the publisher of the well-known scientific journal Science. Up to now, EurekAlert! has more than 14,000 registered reporters from more than 90 countries. More than 5,000 active public information officers from 2,300 universities, academic journals, government agencies, and medical centers are credentialed to provide new releases to reporters and the public through the system.   The original media report of EurekAlert! is attached below. How to build greener data centers? Scientists say crank up the heat  Colder is not always better for energy-hungry data centers, especially when it comes to their power bills. A new analysis says that keeping the centers at 41°C, or around 105°F, could save up to 56% in cooling costs worldwide. The study, publishing October 10 in the journal Cell Reports Physical Science, proposes new temperature guidelines that may help develop and manage more efficient data centers and IT servers in the future.   “The cooling system accounts for over one-third of the data center’s total energy consumption, so many studies talk about reducing the energy consumption of cooling systems,” says senior author Shengwei Wang of the Hong Kong Polytechnic University. “But rather than finding better ways to cool the data centers, why not redesign the servers to operate at higher temperatures?”   Data centers typically operate at temperatures between 20–25°C (68–77°F) today. The conventional cooling systems that maintain these centers work by pulling computer-generated hot air past water-chilled coils to cool down the air before it cycles back to the space. The heated water then enters either chillers or a process called free-cooling before circulating back to the coils. Unlike energy-intensive chillers that operate similarly to air conditioners, free-cooling uses ambient air to cool the water with much less energy use.   To save energy, data centers are often built in colder areas to leverage free-cooling. But thanks to advances in electronic technology, engineers and scientists know that it’s no longer necessary to blast the chiller-based air conditioning at data centers. Many IT servers already allow a higher temperature operation above 30°C (86°F). This means that in most climates, including those that are hotter, data centers can also benefit from free-cooling by raising the temperature of data centers.“The question is, to what temperature?” says Wang.  To find out, Wang and his team built a model based on the conventional cooling system and simulated the system’s operation under different climate conditions. The results showed that data centers in almost all regions across climate zones could rely nearly 100% on free-cooling throughout the year when operated at 41°C, which they coined “global free-cooling temperature.” These data centers could save 13%–56% of energy compared to those that run at 22°C (71.6°F). Depending on an area’s temperature and humidity, the researchers say that data centers might not even need to raise the temperature that far to take full advantage of free-cooling. For example, the temperatures for Beijing, Kunming, and Hong Kong to entirely rely on free-cooling are 39°C (102.2°F), 38°C (100.4°F), and 40°C (104°F), respectively.   “But before we raise the temperature settings, we need to ensure three things,” says Wang. “First, we need to ensure the reliability of server operation. Second, the computational efficiency needs to remain the same. Third, we need to ensure the servers’ energy consumption is not increased by activating their built-in cooling protection, such as the fans.” That said, Wang is optimistic that it is possible for the next generation of servers to work at up to 40°C without performance degradation.   “For the first time we can provide cooling system engineers and server design engineers a concrete goal to work towards,” says Wang.“I think 41°C is achievable in the near future. We’re only 10°C (18°F) or less away.”   Paper link: https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(23)00444-7 EurekAlert report link: https://www.eurekalert.org/news-releases/1004431 Links of other reports: https://www.sciencedaily.com/releases/2023/10/231018115610.htm https://www.eurasiareview.com/19102023-how-to-build-greener-data-centers-scientists-say-crank-up-the-heat/ https://techxplore.com/news/2023-10-greener-centers-scientists-crank.html https://scienmag.com/how-to-build-greener-data-centers-scientists-say-crank-up-the-heat/ https://bioengineer.org/how-to-build-greener-data-centers-scientists-say-crank-up-the-heat/ https://www.miragenews.com/scientists-advise-increasing-heat-for-greener-1106143/ https://cosmosmagazine.com/technology/computing/tackling-data-centre-power-use-by-degrees/ https://www.newscientist.com/article/2398268-energy-guzzling-data-centres-could-work-just-as-well-with-less-cooling/ https://www.labmanager.com/how-to-build-greener-data-centers-scientists-say-crank-up-the-heat-31140 https://www.lifetechnology.com/blogs/life-technology-technology-news/how-to-build-greener-data-centers-scientists-say-crank-up-the-heat https://ecotopical.com/sciencedaily/389163/how-to-build-greener-data-centers-scientists-say-crank-up/ https://www.thetechstreetnow.com/tech/how-to-build-greener-data-centers-scientists-say-crank-up-the-heat/7166857468644253379/7166857468644253379/ https://article.wn.com/view/2023/10/19/How_to_build_greener_data_centers_Scientists_say_crank_up_th/ https://www.onenewspage.com/n/Science/1zpnzusxdc/How-to-build-greener-data-centers-Scientists-say.htm    

20 Oct, 2023

Falling Walls 2023 Finalist for the Science Breakthrough of the Year_Dr Bolong HUANG

Dr Bolong HUANG has been selected as a finalist for the Falling Walls Science Breakthroughs of the Year 2023

We are delighted to share with you that Dr Bolong HUANG, our RISE member has been selected as a finalist for the Falling Walls Science Breakthroughs of the Year 2023 in the category Engineering and Technology.   Dr Bolong HUANG Anocatalysts for broad carbon-strategic applications of sustainable energy   Falling Walls aims at seeking international recognised, established academics and leaders in the practical application of science and mathematics to daily life, whose works contributing in solving the global challenges.   Congratulations to Dr Huang! Read more: https://falling-walls.com/science-summit/finalists/

16 Oct, 2023

Dr Dahua SHOU

Dr Dahua SHOU awarded The Fiber Society’s 2023 Distinguished Achievement Award

Recently, Dr Dahua SHOU, our RISE member and Limin Endowed Young Scholar in Advanced Textiles Technologies, and Assistant Professor in the School of Fashion and Textiles awarded The Fiber Society’s 2023 Distinguished Achievement Award. The Fiber Society is a not-for-profit professional and scientific association, dedicated to the advancement of knowledge pertaining to fibers, fiber-based products, and fibrous materials. And this Distinguished Achievement Award is presented to those individuals who are under the age of 40, for recognizing  the significant contributions in Fiber Science. Field. Furthermore,  it aims at stimulating continuing commitment to the science, engineering and technology of fibers and fiber based products.  It is a recognition for Dr Shou’s significant researches, highlighting his outstanding and innovative achievement in his research! Congratulations to Dr Shou!

10 Oct, 2023

Dr Bolong Huang

Research Story of Dr Bolong HUANG

Dr Bolong HUANG, our RISE member, Associate Professor in the Department of Applied Biology and Chemical Technology shared his research story. Through this Story, you can be more familiar with Dr Huang and his research! Come and join us to discover more about Dr Huang! Reference: Read more: https://polyu.hk/VNsmH

3 Oct, 2023

Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here