Skip to main content Start main content

Academic Staff

People
Dr Yuyue Zhong
PolyU Scholars Hub

Dr Zhong Yuyue

Research Assistant Professor

Research Overview

Dr. Zhong’s research focuses on leveraging starch to enhance food nutritional value, prevent obesity and diabetes, and develop advanced starch-based materials. His projects encompass areas such as starch digestion, nanomaterial synthesis, and photonic materials.

Education and Academic Qualifications

  • Doctor of Philosophy, University of Copenhagen

Academic and Professional Experience

The young editor, Grain and Oil Science and Technology 

Research Interests

  • Starch
  • Carbohydrate
  • Digestion
  • Nano science
  • photonic materials

Research Output

MSCA Postdoctoral scholar
Quadram early career scientist 
 
  1. Zhong, Y., Keeratiburana, T., Kirkensgaard, J. J. K., Khakimov, B., Blennow, A., & Hansen, A. R. (2021). Generation of short-chained granular corn starch by maltogenic α-amylase and transglucosidase treatment. Carbohydrate Polymers, 251, 117056.
  2. Zhong, Y., Herburger, K., Kirkensgaard, J. J. K., Khakimov, B., Hansen, A. R., & Blennow, A. (2021). Sequential maltogenic α-amylase and branching enzyme treatment to modify granular corn starch. Food Hydrocolloids, 120, 106904.
  3. Zhong, Y., Herburger, K., Xu, J., Kirkensgaard, J. J. K., Khakimov, B., Hansen, A. R., & Blennow, A. (2022). Ethanol pretreatment increases the efficiency of maltogenic α-amylase and branching enzyme to modify the structure of granular native maize starch. Food Hydrocolloids, 123, 107118.
  4. Zhong, Y., Xu, J., Liu, X., Ding, L., Svensson, B., Herburger, K., Guo, K., Pang, C., & Blennow, A. (2022). Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends in Food Science & Technology, 123, 343-354.
  5. Zhong, Y., Qu, J. Z., Liu, X., Ding, L., Liu, Y., Bertoft, E., Petersen, B., Hamaker, B., Hebelstrup K., & Blennow, A. (2022). Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydrate Polymers, 119327.
  6. Zhong, Y., Tai, L., Blennow, A., Ding, L., Herburger, K., Qu, J., Xin, A., Guo, D., Hebelstrup, K., & Liu, X. (2022). High-amylose starch: Structure, functionality and applications. Critical Reviews in Food Science and Nutrition, 1-23.
  7. Zhong, Y., Qu, J., Li, Z., Tian, Y., Zhu, F., Blennow, A., & Liu, X. (2022). Rice starch multi-level structure and functional relationships. Carbohydrate Polymers, 275, 118777. 
  8. Zhong, Y., Tian, Y., Liu, X., Ding, L., Kirkensgaard, J. J. K., Hebelstrup, K., Putaux, J., & Blennow, A. (2021). Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocolloids, 119, 106856.
  9. Zhong, Y., Li, Y., Qu, J., Zhang, X., Seytahmetovna, S. A., Blennow, A., & Guo, D. (2021). Structural features of five types of maize starch granule subgroups sorted by flow cytometry. Food Chemistry, 356, 129657.
  10. Zhong, Y., Li, Z., Qu, J., Bertoft, E., Li, M., Zhu, F., Blennow, A., & Liu, X. (2021). Relationship between molecular structure and lamellar and crystalline structure of rice starch. Carbohydrate Polymers, 258, 117616.
  11. Zhong, Y., Qu, J., Blennow, A., Liu, X., & Guo, D. (2021). Expression Pattern of Starch Biosynthesis Genes in Relation to the Starch Molecular Structure in High-Amylose Maize. Journal of Agricultural and Food Chemistry, 69(9), 2805-2815.
  12. Zhong, Y., Wu, Y., Blennow, A., Li, C., Guo, D., & Liu, X. (2020). Structural characterization and functionality of starches from different high-amylose maize hybrids. LWT, 134, 110176.
  13. Zhong, Y., Liu, L., Qu, J., Li, S., Blennow, A., Seytahmetovna, S. A., Liu, X., & Guo, D. (2020). The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydrate Polymers, 247, 116681.
  14. Zhong, Y., Bertoft, E., Li, Z., Blennow, A., & Liu, X. (2020). Amylopectin starch granule lamellar structure as deduced from unit chain length data. Food Hydrocolloids, 108, 106053.
  15. Zhong, Y., Liu, L., Qu, J., Blennow, A., Hansen, A. R., Wu, Y., Guo, D., & Liu, X. (2020). Amylose content and specific fine structures affect lamellar structure and digestibility of maize starches. Food Hydrocolloids, 108, 105994.
  16. Zhong, Y., Liang, W., Pu, H., Blennow, A., Liu, X., & Guo, D. (2019). Short-time microwave treatment affects the multi-scale structure and digestive properties of high-amylose maize starch. International journal of biological macromolecules, 137, 870-877.
  17. Zhong, Y., Zhu, H., Liang, W., Li, X., Liu, L., Zhang, X., Yue, H., Xue, J., Liu, X., & Guo, D. (2018). High-amylose starch as a new ingredient to balance nutrition and texture of food. Journal of Cereal Science, 81, 8-14.
  18. Zhong, Y., Li, X., Lan, T., Li, Y., Liu, L., Qu, J., Zhang, R., Liang, W., Xue, J., Liu, X., & Guo, D. (2018). Effects of Different Thermal Treatment Methods on Preparation and Physical Properties of High Amylose Maize Starch Based Films. International Journal of Food Engineering, 14(4).
  19. Ding, L., Liang, W., Qu, J., Persson, S., Liu, X., Herburger, K., Kirkensgaard, J., Khakimov, B., Rasmussen, K., Blennow, A., & Zhong, Y*. (2023). Effects of natural starch-phosphate monoester content on the multi-scale structures of potato starches. Carbohydrate Polymers, 310, 120740.
  20. Liang, W., Ding, L., Guo, K., Liu, Y., Wen, X., Kirkensgaard, J. J. K., Khakimov, B., Rasmussen, K., Hebelstrup, K., Herburger, K., Liu, X., Persson, S., Blennow, A., & Zhong, Y*. (2023). The relationship between starch structure and digestibility by time-course digestion of amylopectin-only and amylose-only barley starches. Food Hydrocolloids, 139, 108491.
  21. Li, R., Ding, L., Guo, K., Qu, J., Herburger, K., Persson, S., Blennow, A., & Zhong, Y*. (2023). The effects of different types of high-amylose maize starches on viscosity and digestion of acidified milk gels. Food Chemistry, 404, 134525.
  22. Song, Y., Li, X., & Zhong, Y*. (2019). Optimization of butter, xylitol, and high‐amylose maize flour on developing a low‐sugar cookie. Food science & nutrition, 7(11), 3414-3424.
  23. Guo K, Liang W, Wang S, …& Zhong, Y*. Strategies for starch customization: Agricultural modification. Carbohydrate Polymers, 2023: 121336.
  24. Ding L, Liang W, Qu J,…& Zhong, Y*. Effects of natural starch-phosphate monoester content on the multi-scale structures of potato starches. Carbohydrate Polymers, 2023, 310: 120740.
  25. Tian, Y., Wang, Y., Liu, X., Herburger, K., Westh, P., Møller, M. S., Svensson, B., Zhong, Y*, & Blennow, A*. (2023). Interfacial enzyme kinetics reveals degradation mechanisms behind resistant starch. Food Hydrocolloids, 140, 108621.
  26. Wu, W., Qu, J., Blennow, A., Herburger, K., Hebelstrup, K. H., Guo, K., Xue, J., Xu, R., Zhu, C., Zhong, Y*., & Guo, D. (2022). The effects of drought treatments on biosynthesis and structure of maize starches with different amylose content. Carbohydrate Polymers, 297, 120045.
  27. Wu, W., Zhang, X., Qu, J., Xu, R., Liu, N., Zhu, C., Li, H., Liu, X., Zhong, Y*., & Guo, D. (2022). The effects of fermentation of Qu on the digestibility and structure of waxy maize starch. Frontiers in Plant Science, 13.
  28. Li, J., Wang, Q., Blennow, A., Herburger, K., Zhu, C., Nurzikhan, S., Wie, J., Zhong, Y*., & Guo, D*. (2022). The location of octenyl succinate anhydride groups in high-amylose maize starch granules and its effect on stability of pickering emulsion stability. LWT, 113892.
  29. Tian, Y., Qu, J., Zhou, Q., Ding, L., Cui, Y., Blennow, A., Zhong, Y*., & Liu, X*. (2022). High pressure/temperature pasting and gelling of starch related to multilevel structure-analyzed with RVA 4800. Carbohydrate Polymers, 295, 119858.
  30. Song, Z.1, Zhong, Y.1,*, Tian, W., Zhang, C., Hansen, A. R., Blennow, A., Liang, W., & Guo, D. (2020). Structural and functional characterizations of α-amylase-treated porous popcorn starch. Food Hydrocolloids, 108, 105606.
  31. Qu, J., Zhong, Y.1, Ding, L., Liu, X., Xu, S., Guo, D., Blennow, A., & Xue, J. (2022). Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chemistry, 368, 130796.

Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here