Skip to main content Start main content

A novel fuel cell system design featured in International Journal of Energy Research

10 Jun 2019

Department and Staff News

Fuel cells have received worldwide research interest as a promising energy conversion technology in the last decades, primarily due to their simple system design, high conversion efficiency, low carbon dioxide emissions as well as quick fuel refueling. Currently, hydrogen fuel cells are widely studied and preliminarily commercialized. However, realizing the widespread application of hydrogen fuel cells requires addressing the production, transportation, and storage of hydrogen.

A new study about a novel fuel cell system design using ethylene glycol as fuel and hydrogen peroxide as oxidant, reported by Mr Zhefei Pan, a PhD student of Department of Mechanical Engineering, and Dr Liang An, an Assistant Professor of Department of Mechanical Engineering, was recently published in International Journal of Energy Research and selected to be featured as the front cover. Theoretically, this fuel cell exhibits a theoretical voltage as high as 2.47 V, while it is experimentally demonstrated that the hybrid fuel cell delivers an open‐circuit voltage of 1.41 V at 60°C. More impressively, this fuel cell yields a peak power density of 80.9 mW cm−2, boosting the peak power density by 20.8% as compared to the fuel cell using oxygen (67 mW cm−2). This novel design is a promising application for situations where oxygen is not sufficient, such as underwater and outer space.

Read more at https://onlinelibrary.wiley.com/doi/10.1002/er.4176. Z.F. Pan, B. Huang, L. An, Performance of a hybrid direct ethylene glycol fuel cell, International Journal of Energy Research 43 (2019) 2583-2591.



Your browser is not the latest version. If you continue to browse our website, Some pages may not function properly.

You are recommended to upgrade to a newer version or switch to a different browser. A list of the web browsers that we support can be found here