Skip to main content Start main content
Web1

Exploration for New Catalysts Dedicated to a Green Environment

While challenging, research for promising catalysts using effective methods has an immense impact on the environment.  Human activities and the burning of fossil fuels result in carbon emissions, which release significant greenhouse gases that lead to global warming. Achieving carbon neutrality is critical in combating the climate crisis. Dr Bolong HUANG, Associate Professor of Department of Applied Biology and Chemical Technology at the Hong Kong Polytechnic University (PolyU), is dedicated to research in catalysis for the development of new catalyst materials that support sustainable energy supply and conversion technologies, aligning with the global vision of protecting the environment. Ever since the discovery of catalysts 200 years ago, they have become a significant area of research in modern times due to their ability to alter reaction path and accelerate the reaction with lower activation energy towards desired products. Even small quantities of catalysts can have a significant impact. Nowadays, catalysts are indispensable in over 90% of the chemical industry, influencing every aspect of our lives, including oil refining, plastics production, fertiliser manufacturing, medicine development, and energy supply.    Advanced cross-disciplinary research Research in catalysis spans multiple disciplines, encompassing physics, chemistry, biology, and materials sciences. As catalysis involves both chemical reactions and physical processes, solid knowledge across scientific fields is pivotal for designing novel catalysts with high performance.  In catalysis research, Dr HUANG has applied theoretical calculations and machine learning techniques to develop novel catalysts for important chemical reactions in sustainable development. These include water-splitting hydrogen (H2) generation, oxygen reduction and evolution for fuel cells and metal-air batteries, and carbon dioxide (CO2) reduction for controlling carbon emission. Dr HUANG said, “My theoretical calculations not only accelerate the discovery of novel catalysts but also gain crucial insights into fundamental reaction mechanisms. I am driven to pursue catalysis research to identify more novel functional materials that can be applied in sustainable developments.”   The quest for effective catalysts Focusing on designing novel catalysts and investigating catalysis mechanisms for various chemical reactions, Dr HUANG’s studies have garnered high citations worldwide, all driven by the ultimate goal of fostering a sustainable future. Throughout the research journey, Dr HUANG said major challenges revolve around identifying the most suitable catalysts and developing effective methods. Due to the diverse range of catalysts in terms of morphologies, composition, activity, and stability, the quest for the most effective and robust catalyst for a specific application requires extensive efforts in the trial-and-error process. By combining theoretical calculations and machine learning techniques, Dr HUANG’s team accomplishes a comprehensive screening of single-atom catalysts across the periodic table. This approach allows them to identify the most suitable candidates to generate different high-value chemicals from CO2. The research titled “Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy” was published in Advanced Energy Materials in February 2020. The highly cited study presents crucial guidelines for experimental catalyst design and synthesis from two independent theoretical perspectives: density functional theory (DFT) and machine learning (ML) to achieve parallel explorations. The proposed advanced research strategy demonstrates the significant potential of atomic catalysts for efficient hydrogen generation. Dr HUANG said, “My research satisfaction stems from the fact that my works can inspire more researchers and influential scientists in this field, in which all researches together accelerate the developments of advanced catalyst research for sustainable energy technologies.”  For research on CO2 reduction reaction (CO2RR) toward the generation of C2 products (e.g. ethanol, ethylene, acetic acid), there has been the challenge of developing efficient and stable atomic catalysts to achieve high faradaic efficiency and selectivity, which are desirable for broad industrial applications due to their high value and energy density.  Dr HUANG’s research, “Double-dependence correlations in graphdiyne-supported atomic catalysts to promote CO2RR toward the Generation of C2 Products,” provides an advanced understanding of the complicated CO2RR mechanisms, which is expected to aid the development of novel atomic catalysis for efficient C2 products generation. The research was published in Advanced Energy Materials in December 2022. This highly cited work provides valuable insights and references for screening and predicting efficient atomic catalysts to overcome the current bottleneck in achieving efficient conversion from CO2 to high-value-added C2 products.   Staying focused Creating sustainable energy harvesting and conversion systems is crucial in addressing both the energy crisis and pollution caused by the use of fossil fuels. To achieve this, novel catalysts have been developed to accelerate electrochemical reactions such as hydrogen evolution and oxygen evolution/reduction reactions for sustainable energy systems such as fuel cells and water-electrolyser. Meanwhile, applying advanced catalysts in CO2RR systems also supplies promising solutions for reducing carbon emissions towards carbon neutrality. Therefore, developing advanced and efficient catalysts are still one of the most important research topics for sustainable energy technologies.  Dr HUANG said, “A highly cited researcher must have an unwavering focus on the core interest and devote great efforts to solve key challenges in related fields.” Despite encountering numerous ups and downs throughout the research journey, Dr HUANG acknowledges these experiences and inspiration are critical for reaching impactful and meaningful research outputs in the future.  Looking ahead, Dr HUANG is committed to leveraging his expertise and experiences in theoretical calculations to design more advanced catalysts. The ultimate goal is to contribute to the advancement of technology for sustainable development.  Research Interests: Theoretical calculations of electronic structures on nanomaterials, energy materials, solid functional materials, and rare earth materials, as well as their applications in multi-scale energy conversion and supply systems.  Highly Cited Researcher: 2022 (Clarivate Analytics) Selected Highly Cited Publications: B. Huang, M. Sun, H. H. Wong, T. Wu, et. al., Double-dependence Correlations in Graphdiyne-supported Atomic Catalysts to Promote CO2RR towards the Generation of C2 Products, Advanced Energy Materials, 13, 2023.  B. Huang, M. Sun, H. H. Wong, T. Wu, et. al., Stepping Out of Transition Metals: Activating the Dual Atomic Catalyst through Main Group Elements, Advanced Energy Materials, 11, 2021. B. Huang, M. Sun, A. W. Dougherty, Y. Li, et. al., Accelerating the atomic catalyst discovery by theoretical calculations-machine learning strategy, Advanced Energy Materials, 10, 2020. Download Version

2023年9月11日

研究及創新

p1

理大研發液態金屬微電極 具柔軟、透氣、可拉伸優點 可用於植入式生物電子裝置

植入式生物電子裝置可以緊貼皮膚,甚至是放入人體,相信將在未來被廣泛應用於不同領域,例如醫療科技,甚或是新興的擴增實境技術。香港理工大學(理大)的研究團隊成功研發出一種獨特的微電極,能適用於上述用途。此研究成果已於國際科學期刊《Science Advances》發表。 不同於傳統電子產品,可穿戴或植入式電子裝置的用料需要整合一系列特定性能,例如必須能拉伸自如和柔軟透氣,放置於人體後不會令使用者感到不適或受傷。與此同時,生物電子裝置就如日常家居設備一樣,仍然需要依賴具備高導電性且可以印上微細電路圖案的電極。 由理大應用生物及化學科技學系軟材料及器件講座教授鄭子劍教授領導的跨學科研究團隊,成員來自理大時裝及紡織學院、生物醫學工程學系、應用生物及化學科技學系、智能可穿戴系統研究院和潘樂陶慈善基金智慧能源研究院,以及香港城市大學和香港心腦血管健康工程研究中心。團隊克服多項技術限制,研發出一種能應用於植入式生物電子裝置的電極,其特點是具前所未有的柔軟度、可拉伸性和可滲透性,在可穿戴科技領域創新猷。 此技術的關鍵步驟,是將一種纖維聚合物以靜電紡絲的方法,放到銀質微型電路圖案上,從而產生液態金屬微電極(簡稱μLME),可以以超高密度進行電路圖案化,達至每平方厘米多達75,500個電極,比過往的技術多出數千倍。這些μLME具有長期生物兼容性,人體皮膚能舒適地穿戴,更已證明可用作監測動物大腦的特定應用。 過去,生物兼容的電子裝置均在多孔彈性體上製造,但其多孔而粗糙的基質限制了電路圖案的分辨率,因而難以提高電極密度。研究團隊成功突破此瓶頸,透過光刻技術把電子線路放在纖維聚合物基質上,實現了像薄紙般柔軟,能在大應變下高度導電,以及具備長期生物兼容性的μLME。 用作μLME的導電組成部分的共晶鎵銦(EGaIn)是一種具有低熔點溫度、能在極端應變下保持導電性,同時柔軟且高度生物兼容的液態金屬合金。製造過程中,以EGaIn製成的電路圖案會放在一片經靜電紡絲而成的可滲透「纖維墊」上,該墊為苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)。此製法形成了柔軟而可拉伸的電子裝置,可供舒適地穿戴和植入。相對採用不滲透基質時僅能轉移部份電極微電路圖案,鄭教授的團隊於2021年首次開發這種超彈性纖維墊概念,用於新開發的μLME中,保證了來自銀模板的電極微電路圖案能以光刻完全轉移。 μLME柔軟、可滲透液體和氣體,並且拉伸自如,在高應變下反覆拉放後,其電阻只輕微上升。以μLME製成的電子貼在緊貼人體皮膚時,經按壓後只會留下微量甚或完全沒有殘留物。可穿戴電子裝置本身具有龐大市場潛力,應用範圍涵蓋生理監測、醫療診斷和互動技術,而此技術突破將進一步加強其發展可能性。 為了驗證μLME的柔軟度和可拉伸性能使其成為植入神經介面以進行大腦監測的理想選擇,團隊亦合成了具有小電極直徑和高通道密度的μLME陣列,用作充當老鼠大腦中的皮層電圖信號接收器。μLME具有與腦組織相似的機械性能,能緊貼皮質表面,準確記錄神經信號。當沉睡中的老鼠發出非快速眼動睡眠時的典型可識別腦電波時, μLME陣列即能精確檢測到老鼠回應施加在身體不同部位電刺激而產生的體感誘發電位。 鄭教授同時是理大智能可穿戴系統研究院副院長及潘樂陶慈善基金智慧能源研究院首席研究員。他表示:「透過結合光刻技術和柔軟、可滲透的SBS纖維墊,成就了解像度和生物兼容性均前所未見的μLME微電極,克服了舊有生物電子裝置生產方法的技術限制,相信可推動醫療和擴增實境等領域的發展。 」 本研究項目獲研資局「高級研究學者計劃」、理大、香港城市大學、國家科學自然基金委員會和InnoHK創新香港研發平台資助,團隊期望透過提高刻印μLME圖案的解像度,在未來進一步推廣此項發明。

2023年9月11日

研究及創新

1

理大參加「江蘇產學研合作對接大會」展示創新成果及簽訂了合作協議

香港理工大學(理大)參加在南京舉辦的「第二屆江蘇產學研合作對接大會」,展示了創新成果,並與會者進行深入交流。 由理大副校長(研究及創新)趙汝恒教授率領理大學者代表團參加此次活動,就不同領域項目與業界進行深入溝通和交流。由江蘇省科學技術廳主辦,江蘇省生產力促進中心協辦,此次大會旨在推動產學研深度合作,提高科技成果轉化和產業化水準。 理大與江蘇省生產力促進中心簽訂了合作協議,攜手增強理大與江蘇產業之間的研究和技術合作。通過加強交流與合作,理大致力把卓越研究成果轉化應用,以滿足產業和社會需求。 趙汝恒教授表示︰「理大重視研究應用,致力推動研究人員與產業之間的合作,包括開展合作研究、技術轉移項目及建立聯合實驗室。」 理大期望通過更多不同的渠道加強與江蘇省的合作與交流。這次理大在對接大會上與江蘇省生產力促進中心簽署的合作協議便是其中一例。 「蘇港澳高校合作聯盟」由南京大學、理大及澳門大學三校於2021年共同創立,成立目的乃希望發揮江蘇省、香港及澳門三地大學的優勢,進一步加強在人才培育及創新科技研究等領域的交流與合作。  

2023年9月10日

研究合作

20230831 - PolyU receives the most postdoctoral fellows in Hong Kong Scholars Program_V3

二十名「2023香江學者計劃」博士後研究員獲理大取錄 — 全港院校之冠

「2023香江學者計劃」共挑選出六十名來自內地院校的傑出博士後研究人員。香港理工大學(理大)錄取了其中二十人,在參與該計劃的本港大學當中,資助人數居首位。這也是自該計劃於2011年推出首輪以來,理大連續第十三年配對人數最多。 「香江學者計劃」由香港學者協會與國家人力資源和社會保障部全國博士後管理委員會辦公室合作舉辦 ,旨在匯聚兩地人才及研究資源,攜手培育優秀的博士後研究員,尤其是在實驗科學和工程學科範疇。入圍的獲資助人員需於2024 年 2 月 28日或之前赴港跟隨導師開展科研工作。 理大將有20名學者作為導師,指導他們開展高水平的研究工作,為期兩年。研究項目涉及多個領域︰應用數學、物理、生物醫學工程、工業及系統工程、電機及電子工程、機械工程、建築及房地產、土木及環境工程、時裝及紡織等等。 點擊此處查看理大參與學者及研究項目名單。

2023年9月4日

獎項及成就

1

香港理工大學於晉江市正式落地首個技術創新研究院並舉行簽約暨揭牌儀式

香港理工大學(理大)與晉江市人民政府於 9 月 2 日舉行簽約暨揭牌儀式,雙方共建的「香港理工大學晉江技術創新研究院」(研究院)正式落地晉江,是推動閩港深化合作的重大成果,亦是校地雙方攜手共創未來邁出的關鍵一步。 理大董會主席林大輝博士、校長滕錦光教授、行政副校長盧麗華博士、副校長(研究及創新)趙汝恒教授、福建省副省長林瑞良先生、泉州市委書記張毅恭先生、福建省台聯黨組書記劉良輝先生、福建省教育廳副廳長吳偉平先生、福建省科技廳副廳長黃舒先生、泉州市秘書長周小華先生、晉江市委書記張文賢先生、泉州市副市長蘇耿聰先生、晉江市市長王明元先生、理大專家代表、泉州和晉江各級有關領導及當地龍頭企業代表等 200 多人出席活動。 作為理大走出大灣區建立的第一所技術創新研究院,「香港理工大學晉江技術創新研究院」將以合作研究、學術交流、聯合培養、技術轉移等各種不同形式,整合境內外優勢創新資源,重點聚焦紡織科技、創新食品、微電子、科創政策等領域,培養一批卓越工程師和高素質技術應用型創新創業人才,打造成為面向未來、接軌世界的科技創新策源地和新興產業集聚地。 林大輝博士在致辭中表示,科技創新已經成為推動社會發展的關鍵力量。晉江市是中國品牌之都,科技、經濟、文化、藝術等各方面都有高水準發展,作為世界級的研究型大學,理大將會以晉江為起點,助力晉江科技創新,特別是在紡織、智能製造、集成電路及綠色科技等領域,加強技術合作,推動科技成果轉化應用,為晉江、泉州及福建創新發展「晉江經驗」貢獻力量。 滕錦光教授在致辭中表示,第一次到晉江,走訪了很多企業,深深感受到「高品質、創品牌」是晉江經濟社會發展非常突出的特點。理大在基礎研究與創新創業方面獨具優勢,不僅要爭創世界一流科研工作,更希望科研工作能夠對社會經濟的發展產生正面影響。晉江扎實雄厚的產業基礎,為理大提供了很好的應用平台和應用場景,相信理大也可以成為推動晉江科技產業發展的強勁動力,實現互利共贏。 張文賢先生在致辭中表示,教育、科技、人才是全面建設社會主義現代化國家的基礎性、戰略性支撐,也是民營經濟高品質發展的重要動能。衷心希望校地雙方通過研究院這一平台,進一步深化政產學研合作,推動創新鏈、產業鏈、資金鏈、人才鏈深度融合,攜手打造閩港校地合作新典範。晉江市委市政府將倍加珍惜合作機遇,集中力量、集聚資源、集成政策,與理大一同聚焦實業、矢志創新,不斷創新和發展「晉江經驗」,讓「開物成務、勵學利民」精神在晉江綻放新時代的耀眼光芒。 活動當天,雙方除了舉行簡單而隆重的簽約暨揭牌儀式外,還安排了研究院的相關負責人針對紡織科技、創新食品、微電子、科創政策四個研究方向進行宣講,向當地政府、科研機構及企業介紹落地晉江後的發展方向及建設規劃。 自今年年初內地與香港通關後,晉江市人民政府初次訪問理大,此後校地聯繫密切、互動頻繁,到研究院正式落地,歷時只有短短半年,體現了雙方對合作高度重視與辦事的效率。理大期望透過研究院與晉江當地企業作深度合作,推動核心技術的研究與轉化,立足晉江、面向泉州、輻射全省,加強閩港兩地產學研合作,打造閩港校地合作新典範,培養具備創新科技知識和全球視野的創新創業人才。

2023年9月2日

研究合作

20230403 Wang ZuanKai1

Drawing inspiration from nature to advance established scientific knowledge

Conducting research is a prolonged voyage that demands a constant source of motivation and a discerning attitude towards novel perspectives.   Having a sharp eye for new knowledge is crucial to overcoming the limits and challenges of scientific research. Through a small droplet, Prof. Zuankai WANG, Associate Vice President (Research and Innovation), Chair Professor of Nature-Inspired Engineering in Department of Mechanical Engineering at The Hong Kong Polytechnic University (PolyU), has made groundbreaking discoveries for the world. The remarkable discovery has enabled the development of new materials that reduce the contact time between drops and surfaces, leading to revolutionary advancements in scientific knowledge and practical applications. His highly cited research has been instrumental in driving these changes.   Highly cited in surface and interface science Prof. WANG’s research has addressed a number of scientific problems that remained unsolved for centuries. Nature is a major source of research inspiration. Many biological systems coordinate different principles to process and manage information, materials and energy while utilising minimal resources with high efficiency.  “Nature never ceases to enlighten and inspire me,” said Prof. WANG. His primary motivation is to challenge the century-old conventional perceptions and explore their limits with curiosity.  “Many nature’s phenomena, ranging from the self-assembly of natural materials and their response to external stimuli to the intriguing directional flow of liquids on materials, can be explained by sophisticated surface topographical mechanisms,” he said.  Prof. WANG’s research interests focus on seeking, unravelling, and conceptualising the power of evolved surface topographical mechanisms. He then applies these insights to design nature-inspired surfaces that dynamically change their interfacial and transport properties, such as wetting, adhesion, and thermal-fluid transport, for water-energy nexus and healthcare applications.    Pioneering novel directions  According to classical studies, droplets that hit the surface of a lotus leaf surface would spread out, recoil, and then bounce up. Breaking the physical limit that governs the contact time was very challenging. The development of lotus-leaf-inspired materials by Prof. WANG and his team has led to the discovery of the intriguing “pancake bouncing” phenomenon.  The research, “Pancake bouncing on superhydrophobic surfaces,” was published in Nature Physics in 2014. The study demonstrated that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into an upward motion adequate to lift the drop.1 Significantly, the finding is characterised by droplets bouncing off the materials in a pancake shape with a remarkably shortest contact time, resulting in up to an 80% reduction. This outstanding achievement was also officially recognised by Guinness World Records. These insights have contributed to the development of several cutting-edge applications, such as power generation, radiation cooling, thermal cooling, anti-icing and soft robotics.  Finding an efficient method for cooling hot surfaces has been a persistent challenge within thermal engineering and materials science. Prof. WANG’s research, “Inhibiting the Leidenfrost effect above 1,000°C for sustained thermal cooling,” published in Nature in 2022, uncovered the structured thermal armour (STA). The strategy holds the potential to implement efficient water cooling at ultra-high solid temperatures, which is an uncharted property.2 The study has constructed a multitextured material capable of resisting temperatures up to approximately 1,200°C, fundamentally addressing the challenges presented by the Leidenfrost effect since 1756. This breakthrough has opened up many promising applications, particularly in aero and space engines, data centres, and nuclear power plants. Seeing the big from the small  Prof. WANG shared the story of a groundbreaking discovery that originated from a leaf one of his students stumbled upon during a visit to Ocean Park. Although unimpressive at first glimpse, upon thorough and meticulous examination, they discovered that the phenomenon observed in the leaf could potentially challenge a two-century-old scientific understanding. This led to the publication of their novel findings in Science in 2021 under the title “Three-dimensional capillary ratchet-induced liquid directional steering.”   The team’s research uncovered that the spreading direction of liquids with different surface tensions could be tailored by designing 3D capillary ratchets that create an asymmetric and 3D spreading profile both in and out of the surface plane.3 Prof. WANG said, “I always encourage my students to be proactive, passionate and persistent. Sometimes, a small idea and experiment can be a life-changing turning point that opens up a vast world of possibilities.” With his micro-insights into the world, Prof. WANG’s research has made significant breakthroughs in various disciplines by addressing critical scientific questions and overcoming long-standing technological challenges. Prof. WANG shared his research journey and wondered, “Who would have thought that these impactful scientific achievements would emerge from a 9.6 square meter lab with just a single desk?” Prof. WANG considers the worldwide recognition of his research as a testament to his team’s and students’ dedication.  “Achieving such recognition is not easy, but it serves as a source of motivation for us to push beyond boundaries and achieve more breakthroughs. Challenges are always there, and the path to success is full of ups and downs. However, precisely because of these difficulties, the light of reaching the destination shines even brighter.” Like one of his translational research projects, in which one impacting droplet could instantly illuminate a light bulb4, Prof. WANG is convinced that microscopic discoveries could make a powerful impact on the macroscopic level.  Prof. WANG expressed his optimism about the future, “We are fortunate to have the opportunity to bridge the gap between fundamental research and large-scale applications. We will continue on this path by not only answering important scientific questions but also addressing grand challenges that lie ahead.”   Research Interests: Nature-inspired Surfaces and Materials, Additive Manufacturing, Energy Harvesting, Fluid Dynamics, Soft Matter Highly Cited Researcher: 2022 (Clarivate Analytics) Selected Highly Cited Publications: Z. Wang, Y. Liu, L. Moevius, X. Xu, et.al., Pancake bouncing on superhydrophobic surfaces, Nature Physics, vol 10, Jul 2014 Z. Wang, M. Jiang, Y. Wang, F. Liu, et.al., Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling, Nature, vol 601, Jan 2022 Z. Wang, S. Feng, P. Zhu, H. Zheng, et.al., Three-dimensional capillary ratchet-induced liquid directional steering, Science, vol 373, Sep 2021 Z. Wang, W. Xu, H. Zheng, Y. Liu et.al., A droplet-based electricity generator with high instantaneous power density, Nature, vol 578, Feb 2020 Download Version

2023年8月28日

研究及創新

IMG_3897

香港理工大學與深圳市光明區達成協議推動共建產業科技創新研究院

香港理工大學(理大)與深圳市光明區人民政府達成合作意向,簽署合作備忘錄共建「香港理工大學深圳產業科技創新研究院」(研究院),旨在促進港深兩地在教育、科技、人才各方面交流。 理大是第一所與光明區達成戰略共識的香港高等教育院校。雙方期望透過共建研究院,結合兩地的資源,開展全面高效的產學研合作。理大憑藉卓越的科研實力和完善的研究資源,將吸引更多優質科創企業及人才匯聚港深,促進兩地科研合作交流和創業機遇。 簽約儀式於8月28日在深圳光明科學城舉行。在理大校長滕錦光教授、副校長(教學)黃國賢教授及應用生物及化學科技學系系主任周銘祥教授,與光明區委書記蔡穎女士、光明區區長邱浩航先生及光明區統戰部部長楊莉女士的見證下,由理大副校長(研究及創新)趙汝恒教授和光明區常務副區長姚高科先生代表雙方簽署合作備忘錄。 滕校長表示,理大是一所創新型、研究型大學,在基礎研究與創新創業方面具有獨特優勢。此次落地的理大產業科技創新研究院將緊密結合深圳市和光明區的發展特點及規劃佈局,按照「灣區共創、協同發展」原則,集中大學優勢科研力量,瞄準前沿科學問題,聚焦原始創新,以產出重大科研成果為核心目標,配合光明科學城大科學裝置的建設和運營,積極推動相關科技成果的轉移轉化,貢獻國家實現高水準科技自立自強。 光明區表示,此次攜手理大共建研究院,將充分發揮理大優勢學科和全國重點實驗室對科技創新和產業發展的支撐引領作用,疊加雙方優勢,在生命科學、高端製造等方向打造國際一流的科研高端平台,構築集聚科學家、企業家、投資人、創業者的創新共同體。 合作重點還包括協同創新發展平台,鼓勵及協助理大青年師生在深圳市光明區創業,建立可持續發展的科技創新和創業培育基地。同時,培養具有創新動力和先進科技研發經驗的未來行業領袖,為推進灣區高水準人才集聚地的建設做出實質性貢獻。 透過研究院平台,雙方將進一步推動創新鏈、產業鏈、資金鏈、人才鏈深度融合,深化深港兩地科技創新合作,邁進大灣區高質量建設發展目標。

2023年8月28日

研究合作

1

理大獲香港航天科技集團支持 推動衛星導航及衛星通訊領域的發展及創新

香港理工大學(理大)與香港航天科技集團(香港航天)上月簽署合作備忘錄,致力探討衛星導航通訊、衛星遙感及載荷研製上的合作機會,並加強雙方在產學研方面的交流。在此合作架構下,香港航天向理大提供香港及大灣區的常規光學遙感與合成孔徑雷達觀測數據,以及近地軌道衛星載荷空間、載荷測試以及近地軌道衛星測控服務,用於理大進行相關研究及教育,以促進智慧城市、城市空中交通等先進概念和技術的發展。香港航天亦慷慨將一顆多光譜光學遙感衛星的命名權贈予理大,預計於 2024 年發射,是次捐贈的設備及數據總估值達二千萬港元。 理大特此於昨日(8 月 23 日)舉行感謝儀式,出席嘉賓包括理大常務及學務副校長黃永德教授、行政副校長盧麗華博士、副校長(研究及創新)趙汝恒教授、協理副校長(內地研究拓展)董澄教授、香港航天科技集團非執行董事葉中賢博士、副總裁兼技術總監胡明遠博士,及來自理大土地測量及地理資訊學系與航空及民航工程學系等一眾涉獵衛星應用、測控、遙感數據分析,以及大數據人工智能分析跨學科專家。 行政副校長盧麗華博士指:「作為香港唯一一所參與國家太空探測項目的院校,理大在航天科技及衛星導航等方面擁有豐富的技術研發經驗。理大很高興能與香港航天科技集團攜手並肩,締結更長遠和全面的合作夥伴關係。香港航天的支持,定能鼓勵理大團隊在教育及科研領域上精益求精,培育更多航天專業人才,以科研創新回應社會需要,貢獻國家。」 葉中賢博士表示:「本集團很高興能與香港理工大學展開進一步的合作關係,透過合作,可以為香港新工業及航天科技發展方面培育更多相關的人才。展望於未來的長期合作中,藉助香港理工大學廣泛的科研人才培訓及專家顧問團隊,繼續有效地完善人才供應鏈和產品設計及質量,從而推動本港於未來產業的轉型及升級。」 理大多年來致力進行遙感相關的研究,高分辨率光學遙感衛星可協助眾多與多光譜特徵相關的遙感研究項目,包括碳中和研究、樹木健康監測、土地覆蓋分類、海水水質監測、城市地表特性研究等,以推動智慧城市的發展。 預計於明年發射的多光譜光學遙感衛星將能提供更多頻密及高分辨率的遙感數據,推進與環境相關的研究及應用。理大團隊亦正研究利用香港航天的金紫荊星座低軌衛星實現導航增強服務,在未來的低軌衛星中搭載所開發的導航有效載荷。

2023年8月25日

研究合作

20230823 - Prof Raymond Wong -02

理大化學專家獲國家教育部頒發高等學校科學研究優秀成果獎

香港理工大學(理大)理學院院長、化學科技講座教授、歐雪明能源教授黃維揚教授,榮獲國家教育部頒發高等學校科學研究優秀成果獎(科學技術),表彰他在有機光伏材料領域的卓越研究貢獻。 黃維揚教授的研究項目名為「高效有機光伏材料的烷硫基側鏈工程」,與蘇州大學、中國科學院化學研究所及香港浸會大學合作,創新成果得到認可,獲冠以自然科學獎二等獎。 有機太陽能電池,尤其是聚合物太陽能電池,因其低成本、輕量、具柔性和半透明等獨特優勢,被認為是有廣泛應用潛力的光伏(太陽能電池板)技術。提高其功率轉換效率(PCE)是研究重點,亦是走向實際應用的關鍵。 其中,開路電壓(Voc)是決定PCE的關鍵參數之一,需要發展一套簡單通用的分子設計策略提高器件Voc及PCE,以準確調制光伏材料的能級,是發展高效光伏材料的重要策略。 研究團隊開拓了一種烷硫基側鏈工程策略,將柔性側鏈功能化,作為有機光伏材料的能級調節器。這種策略可以有效調節有機光伏材料的能級,從而提高器件的Voc,進而優化PCE。 柔性側鏈是確保材料可溶液加工的必不可少的致溶基團,通過簡便的烷硫基側鏈工程,實現了有機光伏器件Voc及PCE的提升,成為了設計高效有機光伏材料的通用策略。 黃教授表示︰「這個獎項是對我們研究成果的重要肯定,鼓勵我們在研究之路上繼續努力,通過研究創新貢獻社會。」 黃教授的研究領域 包括設計和合成新型具有光功能和能源轉換功能的金屬有機聚合物和金屬有機分子。研究團隊旨在研發可應用於可持續能源的精湛技術及新材料,促進可持續發展。  國家教育部頒發的高等學校科學研究優秀成果獎,旨在 獎勵在開展科技創新、成果轉化並在創新人才培養中作出突出貢獻的高等學校教師、科技工作者和相關單位。  

2023年8月24日

獎項及成就

20230822---Antibiotic-drug-discovery-wins-the-Falling-Walls-Science-Breakthroughs_V3

理大初創企業研發新一代抗生素 榮獲德國2023年度Falling Walls科學突破獎

香港理工大學(理大)學者領導的初創企業,研發新一代候選抗生素,榮獲德國跨界創新基金會嘉許2023年度Falling Walls創新科學突破獎-科學初創企業類。 由理大應用生物及化學科技學系副教授馬聰博士帶領,初創企業Ynno Med Ltd享譽德國2023年度Falling Walls科學突破獎,成為全球25間獲獎企業之一。 總部位於德國柏林的跨界創新基金會(The Falling Walls Foundation),所設的Falling Walls科學突破獎旨在表彰尖端發現,促進各領域的研究和創新,並表揚科學和社會發展的最新突破與成就。 馬博士帶領的獲獎初創企業,利用自家開發的人工智能輔助技術,致力研發突破性的首創抗生素藥物,以應對普遍存在的抗生素耐藥性問題。 研究團隊透過應用人工智能藥物設計方法, 發明新的抗生素候選藥物,以對抗各種多重耐藥性超級細菌及多代抗生素的抗藥性。 馬博士表示︰「作為唯一來自香港的科學初創企業獎得主,我們認為這證明了香港創科實力在國際舞台上得到肯定。透過這個機會,我們希望展示大學在知識轉移方面的熱誠,並為社會作出有影響力的貢獻。」 馬博士的研究工作主要集中於研發和藥物設計。新的抗生素候選藥物正在Ynno Med進行臨床前研究,並計劃在未來進行臨床試驗。馬博士說︰「該獎項對我們迄今取得的成就果予了極大的鼓勵。」   

2023年8月22日

獎項及成就

您的瀏覽器不是最新版本。如果繼續瀏覽本網站,部分頁面未必能夠正常運作。

建議您更新至最新版本或選用其他瀏覽器。您可以按此連結查看其他相容的瀏覽器。